Moto Guzzi’s 2009 Griso 1200 8V

OHL, 4-Valve Power Boosts
Our Favorite Goose

100% SUBSCRIBER SUPPORTED SINCE 1991

INSIDE

16 V Star 950 Tourer—A remarkably competent bagger for under $9000

20 Portrait Of The Over-40 Rider—MCN’s poll paints a totally different picture than you’ve been told to expect

27 Metzeler’s Brand-New Sport-Touring MEZ6 interact—Danny Coe puts the new rubber through its paces

28 Honda Fury—First riding impression of Honda’s first factory chopper

30 Great Bikes—BSA’s 441 Victor, a bargain classic for thumper fans

32 Reader’s Ride—Jeff Odland’s tricked-out 2004 Ducati ST4S works for sport-touring or trackday fun

35 Mental Motorcycling—Center Of Gravity

36 Motorcycle Design—The Semi-Custom

38 Medical Motorcycling—Unintended Consequences

39 Proficient Motorcycling—Recent Trends

48 Innovation Of The Month—Kettenmax
Chain Cleaner

Departments

Open Road 2
Letters 3
MC Bulletins 6
Downtime Files 8
World Motorcycling 10
What’s Happening 43
Street Strategy 46
Cycle Attorney 46
Contact Patch 47

TO ORDER MOTORCYCLE CONSUMER NEWS, CALL 888-333-0354
OR VISIT US AT WWW.MCNEWS.COM
Moving over the Earth’s surface at any given time are approximately 50 enormous air masses that may each cover thousands of square miles, bumping into one another at borders called “fronts” to create the weather changes we experience. Twice daily atmospheric tides create minor fluctuations that are most dramatic at the equator and almost nonexistent at the poles. Think of these air masses as forming an invisible terrain of moving hills and valleys, varying in temperature, creating the high and low pressure regions the weathermen talk about. They are called high or low pressure based on their weight at the ground compared to the average sea level air pressure, which can be expressed in a variety of international units. In America, it’s traditionally given in inches of mercury and 29.92 in-Hg is considered the standard atmosphere. Atmospheric pressure can also be given as lbs./sq.in. Visualize a square inch on the ground at sea level, supporting a square inch column of air stretching to the top of the atmosphere. The weight of the air above it would be 14.7 lbs.

Pressure naturally varies with altitude, as a result of gravity. Just as water pressure under the ground increases with depth, so does the density of air with altitude at high altitudes is radically less. NASA has averaged world conditions year round and notes that air pressure will typically be 1/2 of sea level at 18,000’, 1/3 at 27,480’ and 1/10 at 52,926’. In fact, if temperature remained constant with altitude, pressure would decline exponentially with increasing altitude by a factor of 2.71828. Our bodies are very sensitive to atmospheric pressure, causing our ears to “pop” with climbs of just a few hundred feet as the ride.

Air is mainly nitrogen (78.08%) but the oxygen component (20.95% of the total) is what matters most to humans and our precious internal combustion engines. Neither can work without it. As the amount of oxygen drops, so does available energy, whether it’s found in the muscles of mountain climbers or burned with fuel to turn the rear wheel of a motorcycle. As a rule of thumb, a 1000’ gain in altitude decreases air density—thus oxygen and hp—by 4.5%.

Temperature is also a very important factor in air density. As temperature rises, the air molecules become excited and bounce off one another more vigorously, increasing the space between them and reducing the amount of oxygen in a given volume of air. Low temperatures increase oxygen density. Of course, low pressure and low temperature are typically found together in nature, which complicates the simple mathematical relationship of elevation to air pressure, and I’ve noticed many times that outside air temperature at an airliner’s cruising altitude of 55,000 ft. is consistently very close to 65°F below zero. As an example of how temperature affects hp, consider that if temperature increased from 70°F to 90°F during a day, your hp would drop 2.9% if all other factors remained constant. As an extreme situation, the difference between 105°F and 35°F could create a power difference of 10%.

Humidity is the third most important factor in air density calculations. Because water vapor rising from the oceans and land sources displaces air molecules, it reduces the available oxygen. Relative humidity near the earth’s surface is usually above 30% and the saturation or dew point is very sensitive to temperature. Note that 100% relative humidity at 86°F means the air will contain as much as 3% water vapor, reducing available oxygen and hp by that amount. With 100% relative humidity at 68°F, the air contains less than 2% water vapor.

We’ve probably all noticed how our engines seemed to run better in certain weather conditions, and this wasn’t an illusion created by an especially great ride, perhaps on a balmy evening. Older carbureted engines were very susceptible to the weather (two strokes even more so). In stock condition, their main jets tended to be rich to avoid overheating, so that conditions of low temperature, higher than average barometric pressure and low humidity would give a noticeable boost to power output. The latest fuel-injected engines constantly monitor the oxygen content of the exhaust (closed-loop EFI) to correct air/fuel ratios and meet emissions targets. Ambient conditions are pinpointed by a variety of sensors that naturally include pressure and temperature, allowing the engine management computers to automatically adjust for altitude at the same time. No longer confused by less than ideal oxygen content, their driveability remains good. But they aren’t unaffected by the weather, and power still drops with reduced density.

Engine manufacturers and consumers both need consistency to compare the output of engines tested in differing weather conditions, so the various international standards organizations have created correction factors. It has been said the original SAE (Society of American Engineers) standards were based on average weather conditions in Detroit, as it was home to the biggest automobile factories. The much maligned old SAE J607 standard was based on weather conditions of 60°F, zero humidity and sea level air pressure of 29.92 in-Hg—clearly meant to be optimal for power output. But the current SAE J1349 standard (in effect since June 1990) gives 77°F, zero humidity and pressure of 29.234 in-Hg—more realistic and one that naturally reduces power claims.

All of MCN’s rear wheel dynamometer power and torque numbers are corrected for temperature, pressure and humidity to the SAE J1349 standard, so that all the numbers can be compared regardless of the weather during testing. Some are increased from tested, others are decreased. If, for instance, the test was done when the conditions were 114°F, a 1.22 correction factor might increase the hp to bring it into line with what that same engine should have created at 77°F. If very cool coastal air was the prevailing condition, the tested numbers might be multiplied by .97 to decrease them.

Our quarter-mile testing is similarly corrected. Because our testing takes place at an area nearly a mile above sea level, which happens to be near and at the same altitude as a now defunct NHRA (National Hot Rod Association) sanctioned drag strip, we use the strip’s NHRA correction factors to correct the elapsed time and velocity numbers we record; increasing speeds by a fraction, decreasing times by a fraction to achieve sea level performance as nearly as possible. It still isn’t absolutely perfect, but as in horseshoes and hand grenades, close is good. Cheers!

—Dave Searle
Letters

SEND LETTERS TO THE EDITORS OF MCN
By mail to: MCN—Letters, P.O. Box 6050, Mission Viejo, CA 92690
By fax to: 949-855-0654
Over the Internet to: editor@mcnews.com
From our web site at: www.mcnews.com

We Hear You

I don’t normally write letters to magazines, but I felt like saying something that might be of interest. We all have our preferences when we pick out a type of motorcycle to ride, the type of engine it will have, how many cylinders and their configuration, etc. One of my twins can sound somewhat similar. I think a lot depends on the angle (45º, 48º, 52º, 54º, etc.), and, of course, aftermarket exhausts play a role in what I, think, is a big part of enjoying what we ride—the auditory experience. People like inline fours, others V-fours, L-twins, flat fours, flat sixes, vertical twins, or triples. My letter was prompted by an item regarding the Triumph 2010 Thunderbird in the February 2009 issue (World Motorcycling). It uses a vertical twin, or parallel twin (is that what we ride—the auditory experience. People like inline fours, others V-fours, L-twins, flat fours, flat sixes, vertical twins, or triples. My letter was prompted by an item regarding the Triumph 2010 Thunderbird in the February 2009 issue (World Motorcycling). It uses a vertical twin, or parallel twin (is that the same thing?), but with a 270º crank to create the firing cadence of a V-twin. I’m 56 years old and was mostly familiar with Japanese bikes in the 1970s with their parallel twins (180º) and inline fours (and twins and triple two-strokes, too). But the sound that always got me to turn my head and look was the 360º vertical/parallel twin of the Triumphs, BSAs and Nortons!

There must be some design constraints to prevent that engine design from being used currently, but I sure do miss that sound. I was on a ride a few years ago with a guy on a Yamaha that sounded so familiar. I asked what it was since there was no model ID on the bike. It was, I think, a TDM 800 or 850, something like that. I loved following that bike all day!

Hank Schuman
ltolumbus403@netscape.net

We, too, remember the sound of the long-stroke Triumph Bonnevilles from Meriden, and also loved it. The Nortons, BSAs and Triumphs of the era all used that style crankshaft, and their differing bore and stroke dimensions gave them each a distinct sound. I could personally tell the sound of a BSA from a Triumph long before I could see it.

Brian O'Leary

Correction: Our First Impression of the 2009 Honda CBR600RR with CABS contained incorrect pricing. The standard CBR600RR without CABS is $9,799 and with CABS is $10,799. The cost of the CABS option is therefore $1,000, not the $2,200 we reported.

—to Dave

Motorcycle Consumer News®

(A Division of BowTie, Inc.)

NORMAN L. RUKER, Chairman of the Board; JEFF SCHRAF, Vice President; Advertising: NICOLE FABIAN, Senior Controller; CRAIG WISDA, Controller; DOLORIES WHITLO, Consumer Marketing Director; CHERYL DAY, Collateral Sales Director; RICH KOWEZ, Manufacturing Director; MELISSA KAUFMAN, JUNE KIKUCHI, LAURIE PANGAGIO, Editorial Directors; RUSS CASE, Editorial Supervisor; GROW BUCHANAN, Human Resources Director; CHARLES LEE, IT Director

Motorcycle Consumer News (ISSN 1073-9408) is published monthly by BowTie News, a division of BowTie, Inc., 3 Burroughs, Beverly Blvd., Los Angeles, CA 90057-0900. Periodicals postage paid at Santa Ana, CA 92799 and at additional mailing offices. POSTMASTER: Please send address changes to Motorcycle Consumer News, P.O. Box 37191, Boone, IA 50037-0191. © 2009 by BowTie Inc. All rights reserved. Reproduction of any material from this issue in whole or in part is strictly prohibited.

For subscription inquiries or change of address: Motorcycle Consumer News P.O. Box 37191, Boone, IA 50037-0191 Tel: 888-333-0354 • Fax: 515-433-1013 Visit us online: www.castmag.com/mcn

Subscription rate in U.S. and Possessions: $44 for 12 issues, $65 for 24 issues. Canadian and foreign surface: add $18 extra per year payable in U.S. funds. Single copy price, $7. Please allow 6–8 weeks for new subscriptions to begin. When changing address, give six weeks notice and address label from latest copy as well as new address with ZIP code. Occasionally, we make our subscriber list available to carefully screened companies that offer products and services that we believe would interest our readers. If you do not want to receive these offers and/or information, please write us at Privacy Policy, P.O. Box 6040, Mission Viejo, CA 92690 or send us an e-mail at privacy@bowtienews.com. Please view our Privacy Policy at www.bowtienews.com.

All contributions are welcomed on an exclusive basis, but must be accompanied by return postage. No responsibility is assumed for loss of or damage to unsolicited material. A guide to editorial requirements is available upon request. Permission to reprint or quote excerpts is granted only upon written or e-mail requests and must be approved in writing or e-mail by the editor. Specific reprint guidelines are available upon request.

Publications Mail Agreement Number 40612608, Registration No. R126851765
Return undeliverable Canadian addresses to: BowTie International, P.O. Box 25542, London, ON N6C 6B2, CANADA

Printed in the United States of America

Motorcycle Consumer News

Accepts No Paid Advertising
Letters

Cornering Comparo

Can a rider with intermediate skills obtain similar country- or windy-road cornering results with, say, a full size Touring motorcycle like a Gold Wing as might be obtained when riding a Sport-tourer such as a Honda ST1300? I would consider the Sport-touring bikes to be more agile and more tractable than big touring bikes or heavy cruisers. Is that correct?

—Dave

Frank V. Fiore
frank.fiore@att.net

Frank, a talented rider can throw almost any size bike through corners like it was a pure-bred racebike, but in general, you’re right. A lighter bike will be more nimble and fun to ride in the twisties with a big heavy one, and the lack of cornering clearance on many big cruisers will create a severe limit to cornering speeds.

No Thanks

I think that you folks should poll us, the readership, regarding advertising. If you had 2-3 pages of advertising of products that are universally considered quality products, you might make a little more money and we might get the magazine a little “cheaper.” I’m not talking about advertising from the big motorcycle companies, but instead from products that we all are looking for (e.g., wheel chocks, levers, sliders, etc.). I’m always looking in the other magazines for ideas for mods, which is clearly part of the motorcycle experience. Just a thought.

—Steve Gill
gill_nanayakkara@comcast.net

Steve, we know you mean well, but we still get flack even when we place a small ad in the magazine for books written by our own authors. Money sounds good, but our reputation is priceless, and we would not last long without it.

—Dave

Maintaining An Edge

As an MSF and Rider’s Edge instructor, I read with interest Bill Shaw’s article in the February 2009 issue about the Motorcycle Riding Concepts (MRC) course. I certainly agree with Bill that taking the same refresher course every year is not the most effective way to keep up one’s skills. The MRC offers another option besides the existing skilled classes that are currently taught.

One thing really caught my attention in Bill’s article, and that was the MRC’s instruction to lean with the motorcycle, instead of counterweighting, in tight turns. Bill mentions that this is counter to what we teach in the MSF Basic Rider Course. However, he offers no explanation of why this technique is taught or why it works. Moreover, both photos in the article that show riders navigating tight turns (one of which is of Bill) show them counterweighting. The photos show them leaning their upper torsos in the opposite direction of the turn. So, about a little explanation here. Which is it, and why?

Thanks for a great magazine, and keep up the good work.

—Jon Baker
jonbak@sbcglobal.net
Elmhurst, IL

Get Over It, Flash

I would ask that the Editor of MCN hold Dr. Flash Gordon to his word when he states that his March 2009 article is the last in his series of self-congratulatory rants on weight loss. I get it: We are healthier if we are less fat. Move on!

Now, let’s return to Flash’s normally informative columns.

—John Gurley
jgurley@bdmp.com
Portland, ME

Fury-ous Talk

I’ve never written to a magazine before, but I just had to send a note about the new Honda Fury. When I first saw it, I thought, “Wow, that’s a bold move.” My next thought after looking at it for a second was, “Wow, sterile.” I liked it less and less the more I looked but, you know, it’s all a matter of taste, and everybody gets to have something different if they want. It’s one of the things I really love about motorcycles. However, I did wonder if I was seeing the same things—or not seeing as the case may be—as someone else. I thought I’d better ask my wife, a non-riding disinterested party. “Hey,” she said. “That’s cute [ouch].” “I like the color. It would go really well with my pink jacket.” And for the coup de grace, “Look’s like Barbie’s bike [Again, wow!].” I was surprised. She didn’t say anything like that when Yamaha debuted the Raider. In fact, I seem to remember hearing something like “mean” and “not made for girls” along with a solid dose of “you already have a big bike, that’s enough.” When I showed it to my kids—my daughter rides a CB500, my son a XS650—they both basically shrugged and said, “Oh, nice.” Immediately after, I showed them a new Victory 8-Ball and there were oohs and ahs all around. From the sound of it, this bike will be very “nice.” Is that what a chopper is supposed to be? Thanks for a great magazine.

—Leigh Gollemgeske
lpg306@msn.com

Why No KTMs?

In the March 2009 Used Bike Value Guide, and the previous guide, KTM is not included or even mentioned. Why not?

It can’t be lack of number of bikes. If it was, how do you explain Big Dog and Titan? I’ve never seen one of them, nor seen an article about them. And I’ve only seen about three Victorys, though they get plenty of press.

Thanks for the mystery.

—Dan Nibbelink
dan@nibbelink.net
Berthoud, CO

Dan, be assured that KTM prices will be in all future Used Bike Value Guides. Thanks for bringing this to our attention.

Kerr Makes Waves

Regarding the article entitled Design Overpopulation (March 2009), authored by Glynn Kerr, I take issue with the second paragraph where the author suggests that BMW riders are unfriendly and do not share waving back at fellow bike riders. Additionally, the author puts down Harley riders for the same reason—which is fairly accurate, and refers to BMW and Harley riders by stating “Those two sub-groups aside, the rest of us mostly like to acknowledge each other.”

I have ridden my R1150RT from Prescott, AZ, to Spokane, WA, to Oak Harbor, WA. I have also ridden to Rocky Point, Mexico and taken numerous trips through the Rocky Mountains. I have ridden to Roswell, NM, and the Pacific Coast Highway in CA. And I don’t believe I ever had a BMW rider not wave at me! I have also taken just about the same rides as described here on a Kawasaki 1500 Vulcan, and most bikers have waved at me or back at me. The author has defined “those” and “the rest of us,” thank you very much. It certainly defines where this self proclaimed recluse (fourth paragraph) is coming from. I think he’s riding up the wrong road—in many ways.

Your staff writers are great. I’ve enjoyed MCN articles for many years. MCN is the best bike magazine on the market, but this form of writing is sending the wrong message. I believe the message, as described by Kerr, is setting an example of “us” and “them” based on bike manufacturer. My current ride is a Suzuki V-Strom. I might consider taking my hand off the handlebar to wave at Kerr. Then again, it might depend on what kind of bike he’s riding.

—RickSecord
ricksecord@hotmail.com
Buell Bashers, Are We?

I must say that I’m getting a little weary of your Buell bashing. The comments you made about Bueells in your recent review of the new Harley Sportster were a little over the top. I understand that you did not enjoy the Ulysses in your recent comparison with BMW and KTM models, and that the heat on your right leg really distracted you so much that you couldn’t enjoy any of the positive features of the bike. However, there are plenty of us out here in the real world who love our Bueells. I wrapped the exhaust pipes and put a heat blanket under the seat of my 2008 Ulysses XT, resulting in a great reduction in right leg barbecue. The reason I need to defend the Ulysses is that for me it is the most confidence-inspiring bike in the twisties that I have owned. I sold my Ducati ST3 to my son-in-law so that I could purchase the XT.

Personally I am much more comfortable on the Ulysses on two-lane country roads than the ST3 or any of my previous bikes, including a Moto Guzzi Ballabio, a Triumph Bonneville and a Moto Guzzi SP1000. So, I have to say that in some strange way it hurts when you are so negative about Buells. I must admit that although I have been riding for 32 years and have well over 150,000 miles under my helmet, I have not done track days and am not a particularly fast rider. You commented about the poor performance of the Ulysses in trail braking in your previous article, a skill that is way beyond my riding level and likely beyond the skill level of many, if not most, American riders. Of course, you are entitled to your opinion, but when it comes with so much venom, as in your recent Sportster review, it makes me wonder if there isn’t a hidden agenda.

I have been a subscriber to MCN for many years, and I will continue to be. It is a wonderful motorcycle magazine, and I always enjoy your editorial on the first page. I am simply asking that you think twice before you make such negative comments about bikes that some of us out here really like.

William Dean
bill.dean@louisville.edu

The Physics of Handling

I read in March’s letters section a note from Bill Dutcher and a response from Dave Searle about “The Physics of Handling” which deserves a response. Dave and Bill, you are both mistaken.

Engine forces “extend” the rear suspension of a chain or belt driven motorcycle, not compress it, so long as the angle of the swingarm is negative (the pivot is higher than the rear axle) and the front sprocket is smaller than the rear. Since both of those are true on every motorcycle I’ve ever seen, it’s reasonable to simply state it as fact. Concentricity of the swingarm pivot and front sprocket doesn’t change that.

Here’s a test to show it: While stopped and in gear, hold the front brake tightly and load up the transmission by slowly letting the clutch out a bit. The back of the bike goes up, not down. Here’s a simple “proof.” You can see the rear axle moves forward (and down) as the swingarm moves down. The chain pulls forward. You’ll never get an upward force on the rear wheel by pulling forward on a downward sloped swingarm unless the angle of the chain is steeper than the swingarm; which it can’t be without all sorts of swingarm pivot/chain interference. The amount of anti-squat can be tuned by adjusting swingarm angle, swingarm length, front sprocket location, and (relative) sprocket size, but you can’t tune it away without doing something very unusual.

Bikes squat under acceleration because weight transfer overcomes chain and swingarm anti-squat, not because of drivetrain geometry.

Bill Turano
milktree@mahonkin.com
Waltham, MA

Will, the problem with your example is the fact that when the front wheel is unable to move, the driving rear wheel will attempt to fold the motorcycle in half, and the fact that the swingarm has a declination will then cause the swingarm pivot to rise, extending the rear suspension.

As you say, the sprocket sizes, swingarm angle and the swingarm pivot’s precise position are meant work together with the driving force of the rear tire to neutralize the squat tendency of weight transfer with acceleration as nearly as possible. However, this effect only works well over a narrow range, and my example was based on climbing a rough hill, when the rear suspension tends to be more compressed, reducing anti-squat, giving the chain additional leverage over the swingarm pivot to compress the suspension. Evidence suggests the A-Trak system worked as intended, and a concentric drive sprocket/swingarm pivot reduces anti-squat variations.

—Dave

Great Oilhead Info

Great article by Moshe K. Levy on the recommended and prudent replacement of the Oilhead Cam Chain Tensioner. My 2004 R1150GS is about to turn 100,000 miles, and knowing about the impending catastrophic failure of the stock part, and how to easily prevent it, potentially saves me a lot of time, money, and grief. The detailed “how to” instructions are especially appreciated. The replacement part has been ordered from Tom Cutter, and the bike won’t be started again until this upgrade has been accomplished.

Gary Prickett
beemergary@aol.com
Lead Issue Could Cost Motorcycle Industry $1 Billion

The new lead rules enacted by the Consumer Products Safety Commission that have effectively banned the sales of many youth all-terrain vehicles and motorcycles could lead to $1 billion in lost economic activity annually for the industry, predicts the Motorcycle Industry Council. The projected loss is based on the 2008 estimated value of the retail marketplace for ATVs and off-highway motorcycles and factors out vehicles and related economic value not included as part of the ban. MIC projects that the estimated value of the retail marketplace related to all youth ATVs and off-highway motorcycles exceeds $1.5 billion, but the ban applies only to products that are intended primarily for youth aged 12 and under. Powersports companies have stopped selling affected youth products with lead content in excess of the limits identified in the Consumer Product Safety Improvement Act that went into force February 10, 2009.

Most of the components making up youth powersports products are in compliance. But some parts, that youth would not ingest, unavoidably contain small quantities of lead in excess of the CPSIA limits, such as the valve stems on the tires, aluminum in some brake components, and the terminals on the batteries. MIC.org contains background and updated information about this serious issue facing the powersports industry and has links to tools to contact the Consumer Product Safety Commission and Congress to express your support for the industry’s requests for relief.

Motorcycles Included In Economic Stimulus Package

Language that provides a tax credit for the purchase of 2 motorcycles was successfully added to the economic stimulus bill signed by President Barack Obama, according to the American Motorcyclist Association. The AMA, working in conjunction with other stakeholders, worked diligently to secure the motorcycle provision within the measure. “This inclusive and equitable solution will provide much-needed relief to riders, as well as to those who sell motorcycles,” said AMA Vice President for Government Relations Ed Moreland. “When it appeared that motorcycles were going to be overlooked in this bill, the AMA and the Association’s members, along with Harley-Davidson and others, took our case straight to Capitol Hill and persuaded lawmakers that this was the right decision.” Moreland added that motorcycle riders are just as likely to have been hit hard by the economic downturn as those who buy automobiles and light-duty trucks. Moreover, motorcyclists typically purchase new bikes, apparel, vehicle servicing and aftermarket equipment from local dealers that are family-owned small businesses. Specifically, motorcycles are included as “qualified vehicles” in Section 1008 of the legislation. Those purchasing a new motorcycle will be able to deduct the sales and excise taxes on their 2009 tax returns. Prior to the actions taken by the AMA and others, the deductions only applied to the purchase of a new car or light truck.

Virginia Motorcyclist Bill Defeated

A bill that would have greatly reduced the unusual penalty for two motorcyclists to ride side by side in the State of Virginia has been defeated by the State Senate, HB 1870, which passed in the House of Delegates on February 5, would have reduced the punishment for riding two abreast to a civil penalty with a fine of $25. Currently, two abreast riding, which is legal in 48 states, is considered reckless in Virginia, carrying a fine of $2500 and up to 12 months in jail. An amended version of the bill passed the Senate by one vote, 20-19, on February 24, but was revisited by the Senate one day later and defeated 22-17.

Continental Introduces ABS On Aprilia Models

Continental, an international automotive supplier, is strengthening its presence in the two-wheel market with a new, compact anti-lock braking system (ABS) for motorcycles. The MAB (motorcycle anti-lock braking system), developed by Continental’s Chassis & Safety Division, weighs only about 2.6 lbs. and can be easily installed into the structure of most motorcycle designs. Continental’s long experience developing anti-lock braking systems for passenger cars made it possible to develop the new MAB in just 16 months. The first application will be in three Aprilia models—the Mana, the Shiver and the Dorsoduro—in 2009. In the United States, where there are an estimated 5000 motorcycle fatalities per year, an October 2008 study by the Insurance Institute for Highway Safety (IIHS) showed in comparison that the same model of motorcycles with ABS crashed 38% less than those without. Continental’s first motorcycle integral braking system (MIB) was developed in collaboration with BMW, and unveiled two years ago. Currently, 47 motorcycle models in the United States are available with ABS.

AMA Pro Racing TV On SPEED

AMA Pro Racing and SPEED have announced a new television programming format for 2009 AMA Pro Road Racing events, highlighting coverage of other AMA Pro disciplines and a variety of in-studio and at-event features. AMA Pro Prime Time will air every Saturday night at 10 or 11 p.m. ET (7 or 8 p.m. PT), beginning in March, on SPEED. Each program will range in length from one to three hours, depending on weekly content. The programming schedule will feature flag-to-flag coverage of every 2009 AMA Pro American Superbike and AMA Pro Daytona SportBike race, along with coverage of other AMA Pro Road Racing divisions and select exposure of other motorcycle disciplines under the organization’s umbrella. The race programming will be packaged within a studio show that will offer viewers a variety of features, including in-studio guests, expert analysis, breaking news announcements, motorcycle unveilings and much more. SPEED personality Ralph Sheheen will be the in-studio host for AMA Pro Prime Time while the race coverage team will be anchored by host and play-by-play announcer Leigh Diffey, pit reporter Greg White and a to-be-named analyst. Check your local listings or visit SPEEDTV.com for more information.

Triumph Taking Deposits For New Thunderbird

Triumph North America has started processing deposits for the first wave of 2009 Triumph Thunderbirds, which will arrive in late June. The new Thunderbird is powered by a 1600cc parallel twin
engine and boasts a six-speed transmission and 200mm rear tire. The original Thunderbird first landed on North American shores in 1946 and later gained fame when it was ridden by Marlon Brando in the blockbuster movie *The Wild One*. The new Thunderbird is a radical departure from its ancestor. For more information or to reserve a new Thunderbird, customers should visit their local Triumph dealer.

Buell Homecoming Scheduled For June 5-7

Buell Motorcycle Company is inviting its customers and enthusiasts to visit the company’s East Troy, WI, factory in June and take part in homecoming activities in conjunction with the AMA road racing series round at Road America in Elkhart Lake, WI, June 4-7. Scheduled activities on June 5 include an open house at Buell Motorcycle Company from 9 a.m. to 2 p.m., which will include factory tours, an outdoor product display and an autograph session with company founder Erik Buell from 11:30 a.m. to 12:30 p.m. All events at East Troy are open and free for any Buell enthusiast. In addition to the East Troy open house, there are homecoming activities at Road America during the AMA race weekend, June 4-7, including demo rides on the full line of Buell Motorcycles (Friday-Sunday, 9 a.m. to 5 p.m.), racer autograph sessions under the Buell demo canopy, rider recharge hospitality area under the demo canopy, exclusive Buell Motorcycle parking near the demo area, and the opportunity to watch Buell racers compete on track in AMA Pro Racing and Moto-GT action. For more information about ticket packages and prices for the AMA events, log onto roadamerica.com, or call 800-365-RACE. For more information about the Buell Homecoming, log onto Buell.com.

BMW Backs National Adventure Riding Series

In addition to paved riding, the 2009 AMA BMW National Adventure Riding Series promises some of the best gravel and dirt-road touring you’ll find anywhere. Aimed at big-bore adventure bikes, the AMA BMW National Adventure Riding Series will feature weekend events, with one-day rides optional, where adventure riders come together for fun, camaraderie and miles and miles of two-track ideally suited to the growing crowd of motorcyclists looking for more than they can find on asphalt. Sponsored by BMW, the series is open to street-legal bikes of all makes and sizes. The series kicks off April 18-19 in Bybee, TN, with other events scheduled in California, Ohio, Wisconsin, Pennsylvania, Oregon, Washington, North Carolina, Illinois, Indiana, Kentucky, New Jersey, Alabama and Arizona. A regularly updated version of the schedule is available at AmericanMotorcyclist.com.
More Car Vs. Bike Oil Debate

I was amused to see the “motorcycle specific oil” question surface again. I have put approximately 125,000 miles on a Shadow Ace and a Gold Wing 1800 using Fram filters, automotive 10w40 oil, and changing the oil and filter every 3000 miles without even a hint of any problem. Perhaps it doesn’t work for everyone.

Paul Cornaby
Port Angeles, WA

Oil is a slippery subject and there is no one good answer to this issue. Many factors are involved and many riders have strongly held opinions (none necessarily right or wrong). I don’t mean to suggest Fram filters are going to fail anymore than eating at Jack in the Box will make you sick with e-coli, but both have happened. As a mechanic, I’m aware of a number of oil filter failures, over the years, which wiped out engines. It is rare, but it happens. Same with automotive oils. Some will be fine, while others will cause clutch or starter sprag slippage. When friction-modified, energy-conserving oil contaminates the clutches on a motorcycle, the result can be 3-10 oil change/flushes to fix it, or new clutches costing hundreds of dollars. The end result? Savings negated and extra money spent.

I have used Fram filters in the past and will do it again as needed. I just personally prefer not to because of the quality differences I have seen. I have also used automotive oil in bikes in the past, but prefer not to any longer. Older bikes are happy with 20w50 oils such as Castrol, Kendall and Valvoline, but newer models have tighter clearances that demand 10w40 oil which is more likely to cause issues.

I prefer to err on the safe side. If I use an oil of filter that creates a problem for a customer, they are going to expect me to warranty the problem (as they should). If they prefer to use an oil or filter I don’t recommend, that is their choice to do on their own at their own risk, and I respect that. My goal is to provide MCN readers with answers that offer the best combination of quality and value possible. It is up to the reader to determine what he or she wants to do.

I treat questions from readers as if they were from my customers. As a professional, I want to provide the best service I can offer and to see them ride without mechanical problems so they will recommend me to their friends and return to me for service in the future. So, once again (and again later, I am sure) for the record, let me state: Cheap Chinese oil filters are not necessarily going to kill your motor, but they could. Automotive oils formulated for energy conservation are not necessarily bad for your motor, but could cause clutch slippage and may not offer the transmission protection that unit-construction motors require. I personally prefer and recommend using high-quality, motorcycle-grade filters and oil.

JASO Oil Ratings

I have not seen any discussion of the JASO MA oil rating in MCN. This is specified for my KTM 950 Adventure. Is it being ignored? Is it significant? How is it different?

Dan Nibbelink
Berthoud, CO

Good point, and we should address this as it is quite relevant. The Japanese Automotive Standards Organization (JASO) is the Japanese version of our Society of Automotive Engineers (SAE). All Asian-built motorcycles, as well as your KTM and, no doubt, other European manufacturers recognize JASO oil ratings, referencing them in the oil recommendations.

There are two primary JASO four-stroke engine oil recommendations: T904-MA & T904-MA2. These ratings are for “high-friction” engines with a wet clutch (i.e., motorcycle) while the T904-MB standard is for “low-friction” engines that do not contain a clutch. Our American Petroleum Institute (API) ratings do not directly reflect these factors. In other words, there is no current rating for low- or high-friction requirements. The last API Ratings that are guaranteed safe for high-friction, wet-clutch motorcycle engines are the obsolete SL & SG ratings. Motorcycle-specific oils meet these standards and use the SF/SG rating; they were the last standards prior to the use of “friction modifiers” that I have been warning about in my oil responses. The Current API SL & SM Automotive ratings allow for friction modifiers, and the API, in general, does not take motorcycles into account. We are apparently simply too few to be concerned with, combined with the reality of helping cars to meet EPA standards. Certainly some motorcycles are okay with certain automotive oils, as many riders do use them with success.

Along those lines, the SF/SG API Standards that meet JASO MA ratings generally contain higher levels of anti-wear chemistry, such as zinc and phosphorus, than some automotive oils do. These are critical in protecting high-RPM and high-load, high-shear “boundary” conditions found in transmissions and engines from such things as cam lifter/follower wear. That is not to say that all motorcycle oils have increased levels of zinc and phosphorus. Some do not, but they will not contain friction modifiers. API Ratings are not necessarily recognized worldwide as there are International and European standards, too. In general, none of these overseas standards align directly with API ratings. The API rating is very much driven by EPA requirements.

Drivetrain Losses

I am happily making a short list of new-bikes to consider buying, and even though I have a strong favorite, I enjoy savoring-the-search by comparing a lot of numbers, such as the power-to-weight ratio at the rear wheel. My question: Is there a rule of thumb for estimating rear-wheel hp from claimed crank horsepower, considering the loss in the transmission’s primary drive being belt-driven, gear-driven or chain-driven and by the final drive being by belt, chain or shaft as, for example, Ducati Monster 1100 vs. BMW K1300S vs. H-D XR1200? Thanks!

John Bertram
bertramjrh@msn.com
Olympia, WA

It is generally accepted that a shaft-driven bike loses about 15% power from crank to rear wheel vs. 10% for chain drive and slightly less (about 8%) for belt drive. There are some other factors that will affect the loss, such as how many times the power has to change direction between the crank and rear wheel and other frictional factors that vary between brands; engine configurations, production tolerances, etc. But the 15/10/8% rule is a safe estimate.

Although you are right that the primary drive will also create frictional losses, the exact percentage for each type is still a matter of conjecture. But consider that because the gear and chain primary systems are enclosed, run consistent clearances and are given optimal lubrication, the losses should be low.

A word of warning: Factory dyno numbers should always be taken with a grain of salt. Within the industry there is an old joke about the “magic dyno.” It sits next to the “magic scale” at the factory, and both are operated by the marketing department. MCN’s dyno tests of rear wheel hp are a much better indicator, and seat-of-the-pants, how-it-really-feels-on-the-road trumps numbers on paper every time!

Ducking A Valve Adjustment?

I bought a 2007 Ducati Monster 695 in September 2006. I love the bike, but for a variety of irrelevant reasons I have only put
700 miles on it in 2+ years of ownership (I am almost embarrassed to say that). I store my bike at my Ducati dealer every winter; they tend to the battery and do a service check. The last time I spoke to the service manager, he said that given the age of the bike, he has considered recommending a valve job even though I’m nowhere near the 10,000 mile threshold (or whatever is the current recommended mileage figure) that usually applies to Ducati valve work.

This is my first Duc. I do not anticipate putting more than 1000 miles a year on the bike in the foreseeable future. Would this make sense to you?

Stephen Aronson
smadoc@sbcglobal.net

The bike’s age really should not be a factor in this regard. Valve adjustment (I am sure your service guy did not mean a valve job, rather an adjustment) is a mileage-related service.

All manufacturers recommend a break-in or initial service somewhere between 500-1000 miles. This service should be done at this time, if it hasn’t already. It may or may not include a valve adjustment, and even if it does, the valves may be okay not requiring adjustment, only inspection to verify the clearances. Look at the maintenance table in the owner’s manual for your bike and see if it calls for a valve inspection/adjust at the break-in service. If so, I would do it. Otherwise, no.

Car Tires On Motorcycles

I would like to know your opinion on using car tires on motorcycles. I vaguely remember reading about it, but can’t remember where. Was it in MCN? If so, what issue? I’ve checked all my back issues, to no avail. However, I’m missing March and May 2008. I’d like to research the subject very well before acting on it.

Nick Parsi
San Gabriel, CA

We did address this a year or two ago. It is very simple. Just don’t do it! Car tires are not designed for the heating and side loads generated by motorcycles. If you don’t believe me, call the tire manufacturer technical help line or visit the Q&A sections of their web sites. With the exception of sidecars and special sidecar conversions, there is absolutely no safe or proper way to use a car tire on a conventional motorcycle. As Forrest Gump said, “That’s all I have to say about that.”

Cupping Problem

I own a 2002 Kawasaki Voyager with 74,000 miles on the clock. This is my second, the first, a 1986, is still in my garage with 98,000 miles. I used Dunlop K-491 tires on both these bikes until the tires were recently discontinued. Last spring, I purchased a set of Dunlop Elite-3 tires for the ‘02. I have historically gotten 15,000-16,000 miles from the rear tire. Now, with less than 12,000 miles, the Elite-3 will need to be replaced soon. There is plenty of tread left on most of the tire, but the problem is that it is cupping on the trailing side of each rain groove on the left side of the tire. The leading edge of the groove measures 6/32” but the trailing edge is less than 2/32”. It’s hard to measure because the leading edge has a rubber ball about 2/32” high right at the groove, like it has been scuffing. The right side measures evenly at 5-6/32”. The front tire, as usual, is wearing a little faster on the left side, but it is not cupping. I am hesitant to buy another set of Elite-3s if this is a characteristic of the rear tire. Or is something wrong with the bike?

Roger Clark
clarkscozycamper@yahoo.com

I see a few possibilities. First is tire psi. How often are you checking it and what psi are you running? Make sure to run the psi specified from the Dunlop and not the spec from your owner’s manual as they may be different. It is also possible you have a slow/small leak from a small puncture or at the bead area. This is indicated if the tire pressure goes down at all within a few days after bringing it up to spec. No matter what, check your tire pressure regularly weekly is recommended. Next would be possible overloading. How much gear and accessories do you pack? Combined riders/passenger, gear and bike weight can be calculated and compared to tire load rating. If the tire is at all low on pressure, high loads will have an even greater effect. Also, do you pull a trailer or hitch-carried cooler? If so, how much tongue weight?

Another possibility is rear suspension. Are you running the recommended shock pressure for your loads? I would also pull the rubber boots down on both shocks and inspect for oil seepage. It is possible the shocks are leaking oil and losing damping, which could contribute to your tire condition. If they are leaking, the only option is replacement. If none of these factors are at fault and no improvement can be achieved, try another brand of tire such as Metzeler Marathons or Avon Venoms. I was sad to see the old 491 series go away. They really worked well on the Voyager and other touring bikes.

Pulsing Brakes

I changed the front brake pads on my 2005 Kawi Concours with aftermarket pads, and since then I’ve had a pulsing feel as if there is a slick spot on one or both of the rotors. I didn’t bleed the brakes after the job, as they were firm. It isn’t a safety issue, but the “pulsing” doesn’t allow me to modulate them well at lower speeds. Just in case there was oil or grease on them, I washed them with alcohol. I also put OEM pads in, with no measurable improvement. I have since put 100+ miles on them, with some light and some severe braking and the condition remains. It has made the ride less than fun.

Michael Holloway
Tucson, AZ

The problem is warped rotors. The warping could have been caused by overheating from hard use or dragging calipers, or perhaps by carelessness during a tire change or brake pad installation actually bending the rotors by placing undue force against them on one side.

You will need to determine which rotor (it could be one or both) is bad. Clamp up a dial indicator to the fork, raise and turn the wheel, and record the results. The service manual will have the run out specs listed. You can also perform this check in the same manner with the wheel off the bike mounted in a truing stand. OEM front discs are $200 each, but there are aftermarket options from Braking USA, EBC, Galfer, etc., that will be somewhat cheaper. I would recommend new pads with the new rotors; match the pad brand to the rotor brand you choose. There is also the option of used parts, generally half the cost of new OEM. Just make sure to carefully inspect for warping, thickness and scoring before you pay, or have it in writing that the disc can be exchanged if damaged.

I am afraid there is no repair option for this issue, only replacement.

—Matthew Wiley

Got Problems? Ask THE DOWNTIME FILES

Send questions to: MCN Downtime Files P.O. Box 6050 Mission Viejo, CA 92690
Send e-mail questions (with images in jpeg format) to: editor@mcnews.com
Subject line: Downtime Files

Questions that are chosen will receive prompt responses via e-mail before publication.

Visit us at WWW.MCNEWS.COM • MAY 2009

9
Zero-emission, electric-powered motorcycles appear to be attracting the attention of manufacturers around the world with prototypes being rolled out for evaluation in many categories. Recently, KTM revealed its contribution to the concept—an electric enduro bike! Technical details are much like the expected exhaust emissions—zero, right now—but the photos do reveal how the current prototype looks, at least.

KTM, while the envy of many manufacturers in conventional two- and four-stroke engine design, has little experience with electric motor systems, so rather than starting from scratch, it enlisted the help of another Austrian Company called Arsenal Research.

KTM produced an ultra-light rolling chassis—and obviously with no need for an exhaust system, clutch, fuel tank, etc., there are real weight savings—but we are not being told how much yet. Certainly the bike looks right and is certainly as light and as strong as necessary for its purpose while Arsenal Research is responsible for the battery system, power management and compact motor (using high voltage technology) and the complete transmission.

The project is not merely a design exercise but a serious look at production options, one which KTM is taking to its logical conclusion, as a “ready to race package” for use in competition. The future (even off road!) is looking cleaner, quieter and very interesting.

—Doug Jackson
EVA Track T-800CDI Diesel Now In Production

The Track T-800CDI diesel motorcycle developed by the Dutch company EVA Products is ready for production. The bike made its debut at the Utrecht Show in Holland at the end of February with orders being taken first for the home market. Sales outside of Holland are not planned until September 2009.

A variety of photos and, more recently, drawings have previously been released of the bike, but the photos in this report show the final production bike, complete with its new bodywork (just finalized), revealing precisely the machine that will be supplied from the Utrecht Show onwards. Designed for “adventure” riding, it is delivered with dual-purpose tires.

Erik Vegt remains the man behind the design and construction, and more development and testing over the past year has seen the basic specification of the bike perfected. Its 800cc 3-cylinder 6-valve diesel engine is produced by Daimler-Chrysler. The compression ratio is 18:1 and is boosted by an 18 psi turbocharger aided by an intercooler giving 45 bhp @ 3000/4500 rpm with 73.8 lb.-ft. of torque @ 1800 rpm. Engine management is by a CPU designed by EVA, the throttle is a fly-by-wire type and the engine uses “common rail diesel” technology. It can run on either diesel or bio-diesel fuel. The clutch is centrifugal and works with a constantly variable transmission (CVT). The final drive features a drive shaft running inside the single-sided swingarm, which is very compact.

The chrome-moly trellis chassis has changed little from the prototypes. The suspension uses 48mm male-slider WP forks and a monoshock from the same source. Wire wheels carry twin 300mm front Brembo discs and a single 265mm rear unit, and ABS is also available. The original prototype fuel tank of 15 liters is now increased to 22.5 for even greater range. The bike weighs in dry at 225 kg (496 lbs.) with a seat height 780mm (30.7”).

Performancewise, with its powerful torque and CVT transmission, 0–100 km/h (0–62 mph) acceleration is said to happen in just 3.75 seconds and it has a top speed of 110 mph. Fuel economy? EVA says it achieves 86 mpg at a steady 75 mph. Not bad at all!

—Doug Jackson

Benelli 756cc “2ue” Introduced At Milan

Benelli’s display at the last Milan Show included the “2ue 756” twin, a new concept for the factory in the highly competitive 750cc class. It also looked fully ready for production and so it was not unreasonable to expect a production date to be revealed in the near future.

But now, with more information in hand, it turns out the bike is radically different from any other 750cc twin, and the subject of an ongoing concentrated development program, meaning that the bike won’t see production until at least 2010.

A prime feature of the new 756cc parallel twin is a system that will allow the inlet and exhaust port sizes to be increased and decreased with the aid of a stepper engine to effectively boost output when needed (1). A sophisticated engine management system has been developed by Benelli with its code written using Linux language, permitting a variety of parameters to be controlled to provide optimum performance. Apart from controlling port sizes, Benelli mentions the exhaust system is tuned to reduce heating and increase flow.

Rolling chassis work has been concentrated initially on the frame which is strengthened and improved as a result of computer simulated stress testing.

Plans are for the prototype to be taken to the Nardo circuit in June for reliability testing—for a planned 50,000 kms. Only when the bike has proven to be up to the required standard will definitive plans for production be made, and when it does come on to the market it will surely wake-up the 750 class in a big way!

—Doug Jackson

For more information on bikes or parts featured in World Motorcycling, you can fax the World’s Motorcycles News Agency at: 011-441584-876419, e-mail to: wmcna@tiscali.co.uk, or write to: WMCNA, 51 Greenacres, Ludlow, Shropshire, England SY8 1LY.
Moto Guzzi Griso 1200 8V

OHC Four-Valve Heads Boost The Goose

by Dave Searle

Moto Guzzi’s Griso 1100, introduced two years ago, immediately became the favorite new Goose of every tester at MCN. While it used essentially the same two-valve pushrod motor as the rest of the line, it was based around a unique chassis, different from the frame shared by the Breva and Norge models. The Griso chassis used a pair of wide-set exposed top tubes that formed a visible exoskeleton, rather than a hidden single backbone. Different torsional rigidity, steering geometry, wheelbase and weight distribution gave it an entirely different handling feel. Combined with much higher spec fully adjustable suspension and sport-biased tires, the Griso had a very athletic personality that set it apart from the rest of the model lineup. Over-the-top styling that somehow remained beautifully integrated gave it a brawny hot rod attitude; equally as exciting to the traditional cruiser crowd which appreciated its imposing V-twin, as to sportbikers who could see the potential in its high tech running gear. It was not only great fun to ride, but the big V-twin’s everpresent snarling and popping rivaled Wagner’s Ride of the Valkyries for a pulse-pounding soundtrack. It simply oozed the elusive “character” that some brands find impossible to achieve but that Guzzis have always been famous for. If the size of a rider’s smile is the best measure of owner satisfaction, the Griso 1100 was truly a world-class ride.

Engine

This latest Griso iteration, the 1200 8V is that bike’s fraternal twin, visually almost identical but considerably more powerful, an upgrade guaranteed to inspire even greater moto-lust. Its overhead cam, four-valve motor represents the second major evolution of Guzzi’s classic longitudinal V-twin. The first major redesign came under Aprilia’s ownership, when Guzzi’s virtually obsolete old pushrod overhead valve motor was upgraded with modern technology like plated cylinders, twin sparkplug ignition, helically-cut 6-speed gearbox and a repositioned alternator (moved from the front of the motor to between the cylinders, where it reduced the potent counterforce torque of the big V-twin). Although it held tight to its traditional appearance, the new engine was light years ahead of its outdated previous generation, gave great driveability and changed gears with a sweet lubricity that amazed us. The latest motor is courtesy of Piaggio’s development money (the Italian two-wheeled conglomerate that now owns Vespa, Gilera, Aprilia, Moto Guzzi, Derbi, Ligier and Piaggio scooters), so the machine’s DNA is not all from the same parents, and we were intrigued to see if the build quality or the engineering revealed any differences.

Its larger displacement of 1151cc uses a 95.0mm bore and 81.2mm stroke (vs. the 92.0 x 80.0 dimensions of the 1064cc 1100 motor), but the biggest improvement comes from new overhead cam, four-valve cylinder heads, which required a wholesale redesign of the motor’s internals to accomplish.

Four-valves have been an obvious solution to improved engine breathing practically since internal combustion engines were invented, but the old pushrod overhead valve design had its advantages. For one, an overhead valve cylinder head is very compact, which is perhaps even more appealing in a motorcycle than a car, where a low center of gravity makes a machine easier to manage. Using only half the valves, springs and miscellaneous parts saves significant money, too.

Because air flow actually takes place in the gaps between the valve seats and valve faces, four smaller valves not only give roughly 30% more flow area than two bigger ones, they also leave room in the center of the combustion chamber for the sparkplug, so that flame travel to all the edges is minimized, reducing the need for long spark advance. This subtle enhancement to combustion efficiency also equals stronger power.

So, a change to four lighter valves typically allows higher rpm operation (upped from 8250 to 8500 rpm in the Griso’s case) and a big increase in air flow, both of which will gain hp. In addition, the engine’s compression ratio has been raised from 9.8:1 to 11.0:1 for greater combustion efficiency. The net result in the Griso’s case is a 20.56 hp gain over the two-valve 1100 Griso, from 74.19 to 94.75 hp. Torque is also boosted, from 57.85 lb.-ft. @ 6000 rpm to 71.32 lb.-ft. @ 6800 rpm.

To accomplish this valvetrain conversion, 563 parts inside the motor had to be new, yet externally, only subtle changes to the cylinder head covers, cooling fins and a siamesed addition to the big conical silencer reveal it. Moto Guzzi has naturally converted its entire model line to the new 1200 8V engine.

While extra power is always welcome, the engine has a ragged running quality below 3500 rpm and needs 5000 rpm to really show what it’s got. The dyno print-out likewise reveals a big hole in the torque curve at 4500 rpm. While this sort of lumpy power delivery was the norm years ago, it’s now rare, and we’re spoiled. In fact, the older 1100 Griso had a similar 4500 rpm flat spot. Our quarter-mile runs suffered as a result. It was difficult to launch the bike cleanly until the rider kept the revs above 5000 rpm and abused the clutch to get a strong start. The 8V reached a quarter-mile in 11.51 secs @ 116.0 mph compared to 12.45 secs @ 106.57 mph for the Griso 1100.

Transmission

When Moto Guzzis were redesigned with Aprilia’s money and engineering talent, their transmissions became some of the best in the business. While the latest Griso’s gearbox is still very good overall, it seemed to have lost just a bit of the well-oiled precision we remembered. And we also encountered a few instances when the bike simply refused to go into neutral at a stop, something that never happened with the previous Griso 1100.
Like all current Guzzis, the clutch is a diaphragm spring, two-plate automotive type that runs dry, not the more common multiplate, oil-bath type. Experience has taught us that dry clutches don’t like drag-strip duty, so we restricted our acceleration runs to two rather than abuse it further. In normal use, it worked fine.

Suspension

The Griso chassis uses a rake of 26.5°, trail of 4.25° and a wheelbase of 61.2”—relatively relaxed numbers that make the bike steady in a straight line and give slightly heavy steering. As mentioned, top-quality fully adjustable suspension is part of the Griso package. The forks are massive 43mm male slider units featuring 4.7” of travel and the rear gives 4.3” via a linkage type monoshock supporting a single sided swingarm containing the driveshaft. Guzzi’s unique CARC torque link arrangement “floats” the final drive gears to transfer acceleration and off-throttle torque loads directly to the chassis, eliminating any unwanted suspension effects. Overall, the suspension was firm but reasonably plush, for good ride quality and responsive handling.

Brakes

Fitted with the latest technology, the Griso now employs radial-mount front calipers for the ultimate caliper/disc alignment integrity and best braking feel at the lever. The calipers themselves are Brembo four-piston units and the big 320mm front discs are from Braking in a petal pattern intended to reduce warping and aid heat transfer. The rear is a 282mm unit clamped by a two-piston single-action caliper, and all the brake lines are braided stainless for maximum feel and control.

Both ends give the rider great braking confidence and the bike isn’t too eager to lift the rear end under hard stops like many sportbikes. Our best 60 mph-to-zero stop was just over 116’—an excellent result.

Tires & Handling

The tires are Metzeler’s latest Sportec M3 rubber on handsome Marchesini wheels. We’ve come to expect great things from Metzeler, but we got disturbing messages from the front tire, which felt strangely soft, as if the pressure was too low. It turned out the problem was too much compression damping. The adjuster range was just over two turns total, and the fork was almost rigid as delivered, as it was set too firmly. Once this was discovered, we were very happy with the overall handling. We also didn’t get any sense that the chassis lacked rigidity, as we had on the 1100 Griso. Whatever the reason, the bike was stable and easy to control, with no tendency to stand up when trail-braking.

Ergonomics

The riding position is good for a naked bike. At an indicated 75-80 mph, the wind pressure is nicely balance by your forward lean. And although some form of windshield would do a lot to enhance long-distance sport touring, it definitely looks good as delivered.

The wide alloy handlebars give good leverage, the riding position is comfortable, the seat is well shaped and plush and the pegs are well placed. The passenger accommodations aren’t quite as good, and the passenger portion of the seat seems a bit short for best support while the pilot’s portion looks longer than necessary, perhaps a styling effect. Overall, we were impressed.

Riding Impression

Once the suspension was sorted with reduced front compression damping, we found the machine very capable and fun to ride on demanding twisty roads. The growling, slightly rough power delivery wasn’t really an impediment to sport riding, but it did limit the bike’s ultimate performance somewhat, and we couldn’t help but remember how much more competent the Monster 1100S had been over the same test route just a few weeks earlier. The Guzzi isn’t a supersporting naked bike in the same sense that a Aprilia Tuono or the Ducati Monster are, but it is a fun and very rewarding ride.

Instruments & Controls

Moto Guzzi’s instruments include a trip computer with all manner of readouts like instantaneous and average fuel mileage, distance to empty, average speed for the trip, highest recorded speed, 40-lap timer and even an ambient temperature gauge in addition to all the information you’d typically expect from a well equipped bike like a gas gauge, tach, speedo and two tripmeters.

The mirrors are wide enough to be effective and remain usefully smooth at all speeds. The handlebar levers are four-way adjustable for reach, and the shifter and brake lever tips are also adjustable via eccentrics, Aprilia-style, to customize the fit.

Attention To Detail

The detailing on the bike is one of its best selling points, with a variety of unique styling touches: the oversized gas filler surround, beautiful polished alloy handlebar risers, the screened vents at the forward end of the fuel tank housing, the dramatic silencer endcap treatment, the attractive instrument package and generally muscular lines. But the dazzling detail has a single glaring fault, which is the ugly discoloration on the leading surfaces of its dramatic oversized sweeping exhaust pipes. Although the pipes are said to be stainless steel, their finish looks like chrome plating that has burned away to expose the copper layer underneath. There’s not much an owner can do to mitigate this problem short of having the pipes commercially stripped and refinished, so hopefully the factory will medicate this sad plating acne without delay. The 1100 Griso had the same issue.

Value & Bottom Line

Compared with other Italian naked hot rods like the Aprilia Tuono 1000R (MSRP $12,999, Dec. 2008) or the Monster 1100S (MSRP $13,995, April 2009), the Griso 1200 8V is not competitively priced at $14,290. Certainly its raw performance can be had for much less, but certainly not its charisma.

Guzzis have long been irresistible to a certain group of motorcyclists, and it’s not hard to understand why. You’ll know if you’re drawn to its unique style and character, and the smile it puts on your face will be all the explanation you’ll ever need.
Okay, I’ll admit it: I’m a real BEAR fan. I’m not talking about that crummy football team from Chicago (Go Packers!), but rather British, European, American and Racing motorcycles. And I have a particularly intense passion for Italian bikes, which endears me to the Moto Guzzi Griso 1200 8V all the more. The 8V’s new-design OHC hot-rod V-twin makes beautiful music to match its swoopy, attention-grabbing looks, and yet its nouveau packaging still embodies the soul that has kept Guzzisti worshipping at the altar of Mandello del Lario through good times and bad for almost 90 years now.

Life with the 8V isn’t pure unadulterated bliss, though. It takes a few rides to get used to its “dual” powerband, fettle with the suspension and dial in the brakes, and even then the 8V won’t match the performance of the Ducati Monster 1100 or Aprilia Tuono when the going gets twisty. Most riders might not “get” the 8V at all, but for those who do, riding it is a truly rewarding life experience. Its character will rub off on you.

—Scott Rousseau

I was really impressed with the older Griso 1100 and remember the fun of riding it very clearly, so my anticipation for the new 1200 8V was high. Strangely, that first Griso still seems better. The new model’s extra power only comes into play at high rpm, so most of the time, unless you’re really wringing its tail, you don’t notice the difference much. And while the old and new dyno charts show a similar flat spot at 4500 rpm, the new motor feels much less refined now—10 years behind the times. The engine’s counterforce torque, twisting the chassis to the right as you give it gas, also feels more noticeable, perhaps a result of the higher compression ratio. And while the Guzzi transmission is still very good, it doesn’t seem to be as slick now, and we never had any trouble selecting neutral at a stop with the old 1100.

What happened? Either my standards have been escalating with all the technological improvements I’ve experience in the last two years, or maybe my appreciation of its “character” was like an infatuation; strong but fleeting. And BTW, I like Italian bikes in bright colors, not black and white!

—Dave Searle
2009 Moto Guzzi Griso 1200 8V

SPECIFICATIONS AND PERFORMANCE DATA

ENGINE
Type: air/oil-cooled 90° V-twin
Valvetrain: SOHC, 4 valves per cyl., screw and locknut valve adjustment
Displacement: 1151cc
Bore/stroke: 95.0 x 81.2mm
Comp. ratio: 11.0:1
Fueling: EFI, 50mm throttle bodies
Exhaust: 2 into 1 into 2

DRIVE TRAIN
Transmission: 6-speed
Final drive: shaft
RPM @ 65 mph/rev limiter: 3860/8500

DIMENSIONS
Wheelbase: 61.2”
Rake/Trail: 26.5°/4.25°
Ground clearance: 6.9”
Seat height: 31.5”
GVWR: 547.5 lbs.
Carrying capacity: 463 lbs.

SUSPENSION
Front: 43mm male-slider telescopic forks, adj. preload, comp. and rebound damping, 4.72” travel
Rear: monoshock w/progressive linkage, adj. preload, comp. and rebound damping, 4.33” travel

TIRES & WHEELS
Front: 120/70ZR17 Metzeler Sportec
Rear: 180/55ZR17 Metzeler Sportec

BRAKES
Front: Dual 320mm semi-floating discs, 4-piston Brembo calipers
Rear: 282mm disc, two-piston, single-action caliper

MISCELLANEOUS
Instruments: Digital speedo, analog tach, odometer, 2 tripmeters, clock, ambient temp., average and instant mpg, top speed, engine temperature, oil pressure, oil temperature, fuel level, clock, ambient temp., average and instant mpg,

TEST NOTES

PICKS
- Soulful V-twin motor feels like an Italian Harley-Davidson
- Superior suspension, tires and braking equipment
- Eye-popping style everywhere you look, from end to end

PANS
- Engine doesn’t run cleanly below 3500 rpm
- Needs more wind protection for sport-touring duty
- One-two shifts were clunky and neutral could be elusive

PERFORMANCE
Measured top speed: 143.95 mph
0–60 mph: 3.61 sec.
0–100 mph: 8.44 sec.
60–0 mph: 116.3’
Power to Weight Ratio: 1:5.78
Speed @ 65 mph: 1:5.78

MC RATING SYSTEM
Engine: 5
Transmission: 5
Suspension: 5
Brakes: 5
Handling: 5
Ergonomics: 5
Riding Impression: 5
Instruments/Controls: 5
Attention to Detail: 5
Value: 5

OVERALL RATING: 5

DYNAMOMETER DATA

Value
Moto Guzzi’s new SOHC four-valve 1151cc motor makes 20 hp more than its OHV 1100cc incarnation for a massive performance improvement. However, it’s lost some of its refinement in the process, running a bit roughly below 3500 rpm.

SAE CORRECTED REAR-WHEEL HORSEPOWER

PERFORMANCE

SAE CORRECTED REAR-WHEEL HORSEPOWER

SAE CORRECTED REAR-WHEEL TORQUE, LB. FT.

0–100 mph
0–60 mph
0–116 mph

SAE CORRECTED REAR-WHEEL TORQUE, LB. FT.

RPM, THOUSANDS

94.75 hp

71.30 lb.-ft.

0–1/4 mile
8.44 sec.
116.00 mph
11.51 sec.

0–100 mph
8.44 sec.
101.0 mph
6.60 mph

0–60 mph
3.61 sec.
60–0 mph
116.3’

0–116 mph
11.51 sec.

SAE CORRECTED REAR-WHEEL HORSEPOWER

SAE CORRECTED REAR-WHEEL TORQUE, LB. FT.

RPM, THOUSANDS

94.75 hp

71.30 lb.-ft.

0–1/4 mile
8.44 sec.
116.00 mph
11.51 sec.

0–100 mph
8.44 sec.
101.0 mph
6.60 mph

0–60 mph
3.61 sec.
60–0 mph
116.3’

0–116 mph
11.51 sec.

STANDARD MAINTENANCE

Item
Oil & Filter Air Filter Valve Adjust Battery Access Final Drive R/R Rear Whl. Change Plugs Synch EFI

Time
0.1
0.1
0.3
0.3
0.1
0.1
0.16
0.25

Parts
$48.27
$19.90
$24.00
$24.00
$8.00
$8.00
$55.50
$20.00

Labor
$8.00
$5.00
$24.00
$12.80
$8.00
$20.00

1.41 $123.77 $112.80

* MCN has changed the estimated labor rate to $80 starting March 2007

Visit us at WWW.MCNEWS.COM • MAY 2009
Model Evaluation

2009 V Star 950 Tourer

A great cruiser, by any other name

by Scott Rousseau

THE TAIL END of the 20th century witnessed an entirely new crop of metric cruisers that finally featured styling that appealed to a larger motorcycling audience. Gone are the days of the 1970s and ‘80s, when Japanese cruisers featured crude lines that bordered on the cartoonish, accented by gallons of chrome that seemed to have been splashed in all the wrong places. Today, even so-called entry-level metric cruisers feature good looks to match their performance, and the V Star 950 from Yamaha’s Star Motorcycles division has to be considered among the best of these. Ushered in to replace the departed V Star 650 and 650 Tour, the V Star 950 Tourer represents Star’s bid to appeal to a larger motorcycling audience. Gone are the rigid-mounted engine buzzes the floorboards and the grips—nothing to be desired for long-distance droning, as the vibration from the 46.24 rear-displacement well. The engine does an admirable job of maintaining horsepower numbers very close to its peak of 46.24 rear-wheel horsepower at 6500 rpm as the revs climb past 6000 rpm, well after the torque curve has turned the corner. At a freeway-legal 65 mph, the Star is right in its sweet spot. Out on the open road, any bike called a “Tourer” should have the ability to torque its way past a semi with ease at speeds above 75 mph. The 950 can do it.

Transmission

If the V Star 950 Tourer has an Achilles’ heel, it is definitely in the bike’s five-speed transmission. The ratios feel a little on the tight side—perhaps a concession to the fact that the Tourer does pack a relatively small engine in a “big bike” chassis (wheelbase 66.3”). Gear actuation through the heel-and-toe shifter is smooth around town, and finding neutral is a snap. Lever pull through the cable-actuated clutch is relatively light, making for fun rides on the boulevards and even on tight, twisty canyon roads.

On the freeway, our issue with the transmission is that we found ourselves wanting to make that one more shift that simply wasn’t available. The Tourer could really benefit from a taller fifth gear—although, surprisingly, the rearview mirrors don’t get as excited as we’d expect. Still, the lack of a counterbalancer is noticeable if not intolerable.

Handling & Suspension

The V Star 950 Tourer’s handling can best be described in one word…amazing. Although the bike hit the MCN scales at 658 lbs. with a full fuel load, we had to wonder just where in the heck all of that weight hides once the bike is in motion. The Tourer’s double-cradle steel chassis is light-steering and rock-solid, possessing graceful and balanced handling. Turn-in is very neutral, with the front end giving excellent feedback. High- and low-speed maneuverability is excellent while not sacrificing a hint of straight-
line stability. So, perhaps despite and because of its 32° rake, the V Star 950 Tourer simply feels planted in all situations, a trait that is bound to inspire confidence among the new and returning rider crowd at which this motorcycle is aimed, while impressing those with ample cruiser or touring bike experience at the same time.

Unfortunately, the V Star 950—like many of its Star siblings—is cursed with low cornering clearance. We measured 10.5” from the middle of the wide-set floorboards to the ground, and frankly, it isn’t enough. We appreciate its long, low look as much as any- one, but even mildly aggressive riding at sane speeds on serpentine blacktop will have the floorboards screeching in protest. Trouble is, you’re likely to fall into the trap—as we did—of enjoy- ing the V Star 950’s turning capabilities so much that you’ll ignore the noise, choosing instead to torture the floorboard feelers a lit- tle and let ‘em bend upward on their hinges. Of course, thence comes that really tight turn, the one that requires just a little more lean angle than the bike will tolerate. And that’s when you’ll touch down the floorboard mounts and, er, “unplant” the tires. Not recom- mended treatment, we know. Just an inch or two more ground clearance would go a long way toward alleviating the issue with- out upsetting the ergonomics of the bike, though, and we know that Yamaha’s engineers can do it, because they did it before with the Warrior. Ridden the way it was meant to be ridden, however, the V Star 950 Tourer is still a brilliant handler.

Same goes for the Tourer’s suspension. Its 41mm KYB forks may not be adjustable, but they really don’t need to be. The forks offer a remarkably plush, very controlled 5.3” of travel, easily handling all but the gnarliest potholes you’re likely to encounter. Out back, the Soqi monoshock features a perfect spring and linkage rate likely to encounter. Out back, the Soqi monoshock features a perfect spring and linkage rate that allows it to work through its 4.3” in a supple fashion. Removing the left side cover allows you to select nine different preload settings through the use of an included spanner wrench. For our 180-200 lb. testers, the sus- pension action required no adjustment.

Tires, Wheels & Brakes

Handling can be greatly affected by tires, and fortunately the 130/70-18” Dunlop D404F front and 170/70-16” Dunlop K555 rear are quite good. However, Star will be outfitting some V Star 950s with the Dunlops and others with Bridgestones. Yamaha tell us that both manufacturers have developed their OE fitments specifically for the V Star 950. The lightweight front wheel is an all-new eight-spoke design for Star, measuring 3.50” x 18”. The rear wheel measures 4.50” x 16”.

For such a brawny motorcycle, you’d think that Star might have put in a lot of effort to get the front disc’s brake system to stop the V Star 950, and yet the single 320mm semi-floating front disc and its two-piston pin-slide caliper offers decent solo stopping power and good feel. There is some effort required with two fingers, but the fact that you only have two fingers perch on the brake lever in the first place is a good indicator of the front disc’s power. Stopping distance for our test bike from 60-0 mph was 133.8’. While that isn’t a great number when compared to cruisers of similar displacement that we’ve tested recently, such as the Suzuki Boulevard M50 (June 2005), which stopped 15’ shorter, the M50 is also 83.5 lbs. heavier than the 800cc Suzuki.

That the 298mm rear disc and single-piston caliper could be accused of being too easy to lock up isn’t really much of an accusation at all. When a passenger and luggage for two is on board, it should be darn near perfect.

Ergonomics

Star’s design team has worked hard to give its cruisers distinctive styling. Witness the Warrior, Roadliner and Raider—each of these machines has a look that really carves its own niche stylistically. The V Star 950’s styling DNA is clearly Roadliner, but in a minimalist fashion. Yamaha calls it “Neo-Streamline,” or “Sport Classic” styling, a visual approach that borrows heavily from classic shapes and forms and modernizes them—it’s the same path that Ford has taken with the latest Mustang. The V Star’s uncompli- cated elegance is evident in its tight, clean lines, compact head- lamp, short-bobbed yet flowing steel fenders, slim 4.4-gallon fuel tank and large-faced speedometer. It’s quite a beautiful bike from almost any angle.

However, there is one negative ergonomic trait related to the V Star 950 Tourer’s styling, the big fork-mounted windscreens, which evoke the look of windscreens found on many motorcycles of the Fifties. Unfortunately, those windscreens were not conducive to long-distance driving at today’s freeway speeds and neither is the V Star 950’s. Its wide arched profile creates a constant turbulence around the rider’s helmet, decreasing the fun factor of the bike on long rides. And although it easily could have been, it is not adjustable. Just for grins, we yanked the screen and rode the bike again. The buffeting was replaced by a steady windblast against the helmet, but at least it was a clean wind- blast. Given the choice, we’ll ride the V Star 950 without the screen every time. Doing so also makes the bike faster. With the screen in place, our test unit was good for 97.3 mph during top speed testing. With the screen removed, the 950 was over 7.5 mph faster, recording a top speed of 104.9 mph.

Otherwise, the V Star 950 is incredibly comfortable, boasting an excellent bar-seat-floorboard relationship for riders of all sizes. All the controls feel as if they are in the right place, and the switchgear positions are intuitive.

Final Thoughts

Star Motorcycles has created one heck of a nice mid-sized cruiser with the V Star 950. Used in its element, the bike is blessed with excellent handling, a comfortable riding position, respectable power and great looks. But Star may have pushed this design just a little too far in designating it as a touring model. As it is now, the V Star 950 Tourer is an awesome cruiser with the potential to be a great touring bike if Star engineers were to address the transmission and attendant vibration issues spelled out here. Instead, we’d recommend purchasing the lower-priced V Star 950 (MSRP $7890) rather than the V Star 950 Tourer (MSRP $8990, or $9090 in Liquid Silver), take the $1100 and check out the 90+ accessories available for the V Star 950 in Yamaha’s Genuine Yamaha Parts and Accessories catalog for the parts to personalize the bike your way, then cruise it to your heart’s content.
The V Star 950 is a remarkably competent cruiser. It’s got one of the best cruiser seats out there; the hand and foot positions are very good for someone my size (six feet, 190 lbs.); the mirrors are well placed and the levers are five-way adjustable. And nowhere will you find an indication of its engine size, so that only the bike’s generous proportions imply its displacement. Although its peak power isn’t an impressive number, its torque is very strong, so it flies down the road with ease.

The brakes are very controllable and the steering geometry well developed, so you can trail brake if you like without any unwanted feedback through the bars, and its fun to ride on twisty roads. The leather covered saddlebags hold a reasonable amount, the windshield worked okay for me (but it really should and easily could have been adjustable for height). It’s only real problem is a lack of ground clearance for cornering. The folding floorboards grind early and if you don’t slow down, their solid mounts will hit next and lever the tires loose and you’ll run wide. If you don’t ride it aggressively, you’ll be happy.—Dave Searle

In 1998, I rode a Harley-Davidson Road King from Laguna Beach, CA, to Fort Hays, KS, to catch up to the official Harley-Davidson 95th Anniversary Ride Home—in just under 20 hours. Why the nostalgia trip? Because riding the V Star 950 Tourer reminds me of that ride on the ‘ol King. Heavyweight V-twin cruiser-philes will understand that I’m paying a high compliment to the V Star 950 here. Although, if the Road King had zinged the floorboards at my 80 mph pace (yeah, yeah, I know what the speed limit is), I may have taken more time to travel that 1365 miles. Or, I may have pulled the plug, disillusioned by the buzz and dazed by the wind slapping at my helmet from around the windscreen.

But wait a minute, you say. Isn’t it unfair to compare a motorcycle that cost $15,325 nearly 10 years ago with one that costs $9090 today? No. Because, with taller gearing and a taller windscreen, this “entry-level” Star would be a worthy match for a bike called “King.” That’s how good a cruiser the V Star 950 is, and how good a tourer the V Star 950 Tourer could be.—Scott Rousseau
2009 V Star 950 Tourer

SPECIFICATIONS AND PERFORMANCE DATA

ENGINE
Type: air-cooled 60° V-twin
Valvetrain: SOHC, 4 valves per cyl., screw and locknut valve adjustment
Displacement: 942cc
Bore/stroke: 85.0 x 83.0mm
Comp. ratio: 9.0:1
Fueling: EFI
Exhaust: 2 into 1

DRIVE TRAIN
Transmission: 5-speed
Final drive: belt
RPM @ 65 mph* / rev limiter: n/a/6700rpm

DIMENSIONS
Wheelbase: 66.3"
Rake/trail: 32.5/7"
Ground clearance: 5.25"
Seat height: 26.1"
Wheelbase: 66.3"

SUSPENSION
Front: 41mm telescopic forks, nonadjustable preload, 4.3" travel
Rear: link-type monoshock, 9-way adjustable preload, 4.3" travel

BRAKES
Front: single 320mm disc, two-piston, single-action caliper
Rear: 236mm disc, single-piston caliper

TIRES & WHEELS
Front: 130/70-18 Dunlop D404F on 3.50"x18" wheel
Rear: 170/70-16 Dunlop K556 on 4.50"x18" wheel

FUEL
Tank capacity: 4.4 gal.
Fuel grade: Premium
High/low/avg. mpg: 46.1/36.7/41.4

ERGONOMICS TEMPLATE

BRAKES
Low end
Mid-range
Top end

TEST NOTES
- Enjoyable handling, both stable and fun in the curves
- Very comfortable seating and ergonomics
- Remarkable plush suspension quality

PANS
- Low floorboard scrape too soon when cornering
- Windscreen is too low for most riders; lacks adjustability
- High-rpm vibration needs a taller 5th or acounterblancer

PERFORMANCE
Measured top speed 97.3 mph
0–1/4 mile 14.93 sec.
0–60 mph 6.51 sec.
0–100 mph n/a sec.
60–0 mph 33.8 sec.
Power to Weight Ratio 1:14.23
Speed at 65 mph indicated 62.8

MC RATING SYSTEM

STANDARD MAINTENANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Time</th>
<th>Parts</th>
<th>Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil & Filter</td>
<td>0.5</td>
<td>$42.85</td>
<td>$40.00</td>
</tr>
<tr>
<td>Air Filter</td>
<td>0.4</td>
<td>$34.49</td>
<td>$32.00</td>
</tr>
<tr>
<td>Valve Adjust</td>
<td>3.0</td>
<td>$240.00</td>
<td></td>
</tr>
<tr>
<td>Battery Access</td>
<td>0.2</td>
<td>$16.00</td>
<td></td>
</tr>
<tr>
<td>Final Drive</td>
<td>0.5</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>R/R Rear Whl.</td>
<td>0.4</td>
<td>$32.00</td>
<td></td>
</tr>
<tr>
<td>Change Plugs</td>
<td>1.0</td>
<td>$13.90</td>
<td>$80.00</td>
</tr>
<tr>
<td>Synch EFI</td>
<td>1.0</td>
<td>$80.00</td>
<td></td>
</tr>
</tbody>
</table>

Totals 7.00 $91.24 $560.00

* MCN has changed the estimated labor rate to $80 starting March 2007

Visit us at WWW.MCNEWS.COM • MAY 2009
Feature

A Portrait Of The Over-40 Rider

Is he or she driving up the accident statistics, or actually a safer than average rider?

by Wendy Moon

For years the media have blamed rising motorcycle fatality rates primarily on riders 40 and older who returned to riding on a new high-powered motorcycle without training, relying on old rusty skills.

The statistics seem to support it: A study released in 2007 by the University of Michigan Transportation Research Institute found that the number of fatalities among riders 45 and older had quadrupled from 2001 to 2005. The National Highway Transportation Safety Administration (NHTSA) statistics also stress the increase in high-powered motorcycle involvement as well as older riders in the fatality statistics.

The Motorcycle Safety Foundation (MSF) considers older riders on the road to be such a problem that it created a special course, Seasoned Rider, to educate them about the effects of aging on riding.

The inference in these articles and official pronouncements is that older riders are at higher risk simply because they are older. That makes it an important issue because, according to Motorcycle Industry Council (MIC), in 2008 the median age of all riders was 42 years. J.D. Power and Associates, however, puts it at 47. In other words, more than half the riders in America would be members of this perilous group.

So how much truth is there in this story of the returning or new older rider? Is it true that older riders are dying in unoward numbers on the road? Isn’t true they are less skilled, untrained and unsafe? We set out to investigate the issue by going beyond the sound bites and press releases. We didn’t just study the studies, we studied the riders themselves in a survey done in the spring of 2007, and quite a different portrait of the older rider emerged than what the media tells us. Here is what we found:

Who Is The Older Rider?

We sent out a questionnaire on the Internet and 122 responses were returned before the deadline. They represented 27 different states across the nation including snowbelt and sunbelt states, mountain states such as Colorado and fairly flat states like Nebraska. There were desert states such as Arizona and rainy states such as Oregon, rural states and heavily urban states like New Jersey. In other words, a wide range of riding habitats and climates were represented.

The respondents represented a wide cross-section of the motorcycle community — there were motorcycle rights activists and rider educators. Some were club members of such organizations as the Gold Wing Road Riders Association and various BMW clubs, family clubs, even one-percenter clubs as well as non-affiliated riders. The kinds of motorcycles owned by respondents ranged from antique bikes to brand-new 2007 models produced by all the major manufacturers as well as some obscure ones.

Of all the respondents, 57% were riders in their 50s followed by those in their 60s (23%) followed by those in their 40s (20%). Only one respondent was in his 70s. Men made up the overwhelming majority at 95%. Fifty-seven percent identified themselves as continuing riders and only 16 riders had five or less years of riding experience.

The MIC 2003 Owner’s Survey found that only 36% identified themselves as returning riders with an average break of 13 years. Our survey, however, found 43% of riders said they had stopped riding at some point in their lives and returned. Of those, 44% took a break of six to ten years and 28% took a break of 11 to 19 years.

Studies on older riders done through Monash University Accident Research Centre in Australia found that the average age of returning riders—in that country—was older than that of continuing riders, which was greater than that of novice older riders. This was not the case among our respondents.

In short, in many ways it was a very good cross-section of the motorcycling community.

Riders Have Always Returned

One of the first things that became clear from examining the data was that “Returning Riders” are not a new phenomena. Rather, motorcyclists have always taken breaks from riding for one reason or another — some for a year or two and some for decades.

Some of those who called themselves returning riders had returned long before this decade-long rise in fatalities. Others had returned recently — but hadn’t crashed after returning. Still others who identified themselves as continuing riders went on to describe periods when they had hardly ridden or hadn’t ridden at all — they just didn’t see themselves as “returning riders” since those breaks had been so long ago. Some riders mentioned how they hardly rode at the present time but had ridden tens of thousands of miles in the previous several years and expected to do so again after a situation, such as a job, changed. Far from being something new, then, the “returning rider” is the norm in motorcycling.

Examining the crash data motorcyclists supplied as part of the questionnaire, their crash history did not typically line up with their return to, or increase in, riding — few had crashes soon after they began riding again. The notion of the returning rider at any age as a cause of the soaring death toll or at greater risk of crashing appears to be questionable.
A composite picture of the older rider: The total miles traveled in an average year by the 122 survey respondents was 1,331,000 mi. with a total of 3,485 years of riding experience. The average age was 55, the average years riding was 29 and the average mileage was 11,968 miles.

That mileage is far higher than the NHTSA 2000 figure of 2,411 average vehicle mileage traveled (VMT) for all riders. It’s also higher than the MIC 2003 Owner’s Survey that found an average of 3019 VMT. Our survey found that continuing riders who had never taken any form of training rode more miles than any other rider category, including continuing riders who took advantage of training opportunities, returning riders or novice riders.

At that time, Tim Tritt, 54, of Oklahoma, had ridden the shortest length of time (6 months) and Rogue, 69, of Florida had ridden the longest (55 years). Tritt also had lowest mileage (1500 mi). The highest yearly mileage was claimed by two riders—Wally Kiburg, 52, of Illinois who identified himself as a returned rider after a break of 18 years, and Marilyn Bragg, 51, of Tennessee who says she is a continuing rider. Both said they ride 50,000 miles a year.

The majority of riders expected to continue riding as long as they possibly can. When asked at what age they’d give up riding the most common response was “never.” However, if an age was given, 70–75 was the one most often cited.

Some of the responses revealed their deep passion and commitment to motorcycling and ranged from “They’ll have to pry my cold dead fingers from the grips,” or “…from the keys,” to “Quadruplegia or death,” to “when the smile is gone.” If their health gave out, or if they (or someone they rode with) thought they were no longer fit to ride, were other reasons cited, as was balance, though several mentioned they’d just switch to a three-wheeled vehicle in that case.

Licensing

One hundred percent of the 122 respondents claimed they were fully and legally licensed to operate a motorcycle. The MIC 2003 owner’s survey found that 87% were licensed but that included younger riders as well, and the MIC says older riders are more likely to be licensed. Umesh Shankar at the NTSB hearing in September, 2006, stated that 10% of 50-59 year olds’ fatalities and 20% of 40-49 weren’t licensed. The higher rate of licensing in our survey respondents, then, may or may not indicate that licensing is associated with safer riders.

Personal Protective Equipment

While the respondents weren’t quite “ATGATT” (All The Gear All The Time) they were darn close—and many stated that the reason they wear gear is because they’re older—and wiser. Even though well over half who returned questionnaires were from states without universal helmet laws, 83% reported they always wore a helmet. When motorcyclists who wore one “on occasion” were included, the percentage rose to 98%. Full-face helmets were the overwhelming choice, with 3/4 helmets following in popularity. When it came to gear, over 80% reported they wore it all the time. The kind of gear varied extensively, and the majority of riders reported they owned more than one kind of riding clothes. Textiles and leather were equally popular. Gear use among the survey’s 40 Plus motorcyclists was somewhat lower than in an Australian study, but still quite high.

This high rate, then, indicates that, as a general rule, older riders are actively trying to reduce risk and are proactively pursuing safety even when they are not required to by law.

Older riders also have a great deal of trust in the protective abilities of personal protective equipment. Fifty-nine percent of respondents thought helmets were either completely or significantly/very effective at reducing injury and 49% thought they were completely or very effective at reducing death. NHTSA, however, estimates that helmets are only 37% effective in preventing a fatality, and during his presentation at the NTSB hearing, Dr. Richard Alcorta of the Maryland Institute for Emergency Medical Services Systems stated, “A helmet only… reduces head injury by about 25%.”

Sixty-six percent of those surveyed thought leather or textile pants and jackets were completely or significantly/very effective at preventing injury and 48% thought it was completely or significantly/very effective at preventing death. However, Liz de Rome, also speaking at the NTSB hearing, said, “Protective clothing is not going to protect you from a high energy impact…from being bent or crushed.” However, MAIDS found that 40% of all crash-involved riders tumbled and slid without impacting anything but the road surface. Gear is good for reducing about 50% of the most common and minor injuries suffered in crashes—abrasions—and, if it has hard armor, can reduce the number or severity of fractures. But clothing—no matter how good—cannot prevent or reduce the most lethal kind of injuries.

Older riders are making a choice for safety which is good. However, the survey revealed they may be riding and perhaps making risk decisions based on an unwarranted overconfidence in the power of personal protective equipment to prevent injury and death.

They Ride Sober

Almost 75% of all riders said they never drank and rode, and a further 18% said they rarely drank. Those rare
drinkers reported that they drank responsibly—they had one beer or a glass of wine with a meal or only one an hour. Some stated that even then they only did so when they were a short distance from home or that they waited half an hour or more after they drank that one beer before getting on the bike. This then is a far cry from the image promoted in the media.

Training

When it came to training, a very different picture also emerged than what is popularly believed: While over 85% of all respondents had originally been either self-taught or family/friend taught, 75% of those who identified themselves as returning riders said they took some kind of skills refreshment when they began riding again and a hefty majority (68%) of continuing riders had also sought out training at one point or another. A whopping 94% of the new riders had taken at least the MSF basic learn-to-operate course. In total, 60% of all the respondents had taken some sort of training at some point with many taking several different classes and kinds of training. The majority took MSF curricular products—and many said they took them more than once. Other training opportunities cited were Gold Wing Road Rider Association safety programs, Team Oregon classes, Reg Pridmore’s C.L.A.S.S., Keith Code’s Superbike school, Lee Park’s Total Control course, Streetmasters and a wide variety of track days.

The MIC’s survey, on the other hand, found that only 24% had taken their learn-to-operate basic course and only 5% had taken the Experienced Rider Course. The MCN survey suggests that returned riders and continuing riders do take advantage of training opportunities. It also suggests they simply found other forms of training more appealing or saw them as more beneficial than MSF courses.

The Australian studies found that 93% of novice riders—like our American survey respondents—were also more likely to take a basic riding course. Continuing riders were also more likely to report taking at least one advanced training course—once again, our questionnaire had almost the exact same percentage (67%)—while far less (57%) Australian returning riders had taken training than in our questionnaire.

Health

A significant minority (25%) of riders said they had chronic health problems ranging from asthma, diabetes, heart conditions/high blood pressure, depression/anxiety to cancer. However, a great many more riders who didn’t claim chronic health problems later stated they took prescription medicines and medications normally prescribed for high blood pressure, cholesterol, allergies, anti-depressants, prostate problems and so forth—which could be accurately described as chronic health problems. Few riders indicated problems with arthritis or other joint problems. Older riders, then, may have more ongoing health issues than experts have accounted for previously.

Some mentioned that they had checked and their prescriptions did not impair riding (and all riders should check with their medical professional in terms of drug suitability for riding). Medical professionals, however, may not understand how long their patient rides between stops, how short those stops may be, how many hours and miles they may ride in a day or the changes and range in temperatures they may experience. Such information can affect whether medications and riding are a good combination or not.

Additionally, both the kind of medical issues—such as heart conditions—and medications the rider is taking can become important in a crash since both can prevent, limit or impact the medical procedures or treatments one can receive for certain injuries such as brain trauma. This then, could affect whether an older rider can survive the same accident a rider without those medical issues can.

The effect of riding conditions associated with aging and drug interactions both in variable riding conditions and in emergency treatment, then, may or may not be an issue in the older rider death toll and needs serious study as the majority of the riding population ages.

No Fair Weather Riders

Accident causation studies do not find that weather is a significant factor in motorists’ crashes and NHTSA’s statistics on time of day for crashes find that most riders are killed during the day. However, age may make a difference in both weather and lighting conditions and safety on the road.

While many respondents lived in sunbelt states, still 70% rode year round...
Ride Long, Ride Hard
Sixty-nine percent said they rode as much or more now than when they were younger. It was impossible to quantify the average length of ride for survey respondents because the range was so broad. While a very few said their typical ride was 40-60 miles, the majority said their average trip was over 150 and as much as 700 miles in a day. When they’re out riding, the majority seem to take breaks determined by their motorcycle’s gas tank capacity and those lasted only long enough to fill the tank and empty the bladder.

New riders and those with a lower annual mileage tended to take shorter day trips, stop sooner and take longer breaks. However, when it came to feeling the effects of age, some riders indicated that they fatigued more easily and/or didn’t have the strength or endurance they had when they were younger—also the age factor they observed most often (besides balance difficulties) in other riders. Medical professionals cite loss of muscular strength, growing tired faster, and even the ability to withstand g-force (as in acceleration or deceleration) are also effects of aging. Physical conditioning can off-set those effects but only one rider mentioned specifically using that to increase his ability to ride longer and harder. Recent studies are also finding that older people need to eat more and eat more often for energy than younger people.

The larger motorcycles with larger gas tanks preferred by older riders then may have an entirely different effect on increasing risk for older riders by lengthening the distance and time between stops as does the overwhelming pattern of taking as short as possible stops or delaying meals. Changing these riding patterns and exercising more, then, may be a way for older riders to be safer on the road.

Older Riders Prefer To Go It Alone
Contrary to the popular image of motorcycling as an intensely social activity devoted to the massive rallies like Sturgis, Daytona and Laconia as well as charity rides and club rides, 70% of respondents said they usually rode alone and preferred it that way. While a majority (55%) said they did go on charity rides, 62% of them said they attended only one or two a year. Only 14% said they generally rode with groups of any kind.

This may or may not be related to the 29% percent of all respondents that said that they, on occasion, felt they were expected to ride harder or faster than they wanted when they were with others. As Dr. Arla Hile, 44, wrote about experiencing peer pressure, “That’s why I stopped riding with others many years ago.” She rides a 1981 BMW R65 and a 2004 BMW R1140R, and has ridden for 24 years.

However, a large number of those who said they didn’t give in to the pressure to go beyond their comfort zone still indicated the pressure was felt: “I try hard to resist” and “I don’t fall into that trap”. New riders indicated they were less likely to resist the group pressure. According to one newer Californian rider, giving into group pressure led to a crash, and several riders indicated elsewhere in the survey that was one of the benefits of growing older—they no longer felt they had to ride to others’ expectations. The survey also indicated that the choice of riding companions played a safety role.

Good Company
When they did choose to ride with others, it was with a few friends—and they’re overwhelmingly choosy about who they ride with. While some had a preference for riding with those close to them in age, the majority rode or were willing to ride with motorcyclists of any age or sex as long as they share the same values and style of riding. Safety was cited as the number one priority. Respondents mentioned the importance of similar skills, “only folks who wear gear” or “only safe riders.” The choice of less reckless riding companions was noted by some as one of the changes made as they’ve grown older; they say it has made them better riders.

Rogue currently lives in Florida and has now been riding for 57 years.

The overwhelming majority of riders—from 95% to 71% depending on which weather condition rode at night, in the rain, in fog, in high winds and temperatures over 100° or under 40°. The only weather that riders overwhelmingly avoided was snow and ice, and even then, 29% rode in it, though only occasionally and out of necessity.

However, as indicated above, it’s the exposure to the elements where aging and the probability of chronic medical conditions do have a notable effect. Changes in vision is one of the first signs of aging, appearing by the early 50s. Night vision is also affected early on and night is also a time that’s particularly lethal for riders. However, the same changes in vision that make it harder to see in the dark also make it difficult to distinguish the contrast between blues and greens, and makes other colors dim. While driving in fog is problematic for all road users, geriatric experts say aging eyes might find it even more difficult and the same glare problems that headlights cause can and do happen in bright sunlight. However, the majority of riders had their eyesight checked within a year and nearly all riders had done so within two years revealing they were aware of the safety issues in that regard.

Hypothermia (body temperature rises dangerously low) and hyperthermia (body temperature falls dangerously low) can also affect riders as they age since the body’s ability to control temperature decreases as we grow older. Even changes of 1.5° either way in core body temperature can seriously affect cognition and motor skill performance. If an aging rider has certain health problems and/or medications, these can further reduce one’s ability to handle changes in core body temperature and lead to crashes.

Hypothermia is particularly dangerous for men as they age and for those with heart disease, diabetes, liver problems and endocrine disorders, arthritus, stroke, and Parkinson’s disease and even over-the-counter cold remedies. On the other hand, blood pressure, heart, kidney and lung diseases are particularly affected by high temperatures and medications such as diuretics, sedatives, tranquilizers, and some heart and blood pressure medicines may make hyperthermia more likely. The increasing popularity of electrics warmers: grips, vests and seats, enable riders to ride all year-round and can safeguard older riders from age-related effects. Several riders mentioned that they do use some form of electrics warmers. Such a remedy may keep aging riders safer on the road.

despite the weather. The overwhelming majority of riders—from 95% to 71% depending on which weather condition rode at night, in the rain, in fog, in high winds and temperatures over 100° or under 40°. The only weather that riders overwhelmingly avoided was snow and ice, and even then, 29% rode in it, though only occasionally and out of necessity.

However, as indicated above, it’s the exposure to the elements where aging and the probability of chronic medical conditions do have a notable effect. Changes in vision is one of the first signs of aging, appearing by the early 50s. Night vision is also affected early on and night is also a time that’s particularly lethal for riders. However, the same changes in vision that make it harder to see in the dark also make it difficult to distinguish the contrast between blues and greens, and makes other colors dim. While driving in fog is problematic for all road users, geriatric experts say aging eyes might find it even more difficult and the same glare problems that headlights cause can and do happen in bright sunlight. However, the majority of riders had their eyesight checked within a year and nearly all riders had done so within two years revealing they were aware of the safety issues in that regard.

Hypothermia (body temperature rises dangerously low) and hyperthermia (body temperature falls dangerously low) can also affect riders as they age since the body’s ability to control temperature decreases as we grow older. Even changes of 1.5° either way in core body temperature can seriously affect cognition and motor skill performance. If an aging rider has certain health problems and/or medications, these can further reduce one’s ability to handle changes in core body temperature and lead to crashes.

Hypothermia is particularly dangerous for men as they age and for those with heart disease, diabetes, liver problems and endocrine disorders, arthritus, stroke, and Parkinson’s disease and even over-the-counter cold remedies. On the other hand, blood pressure, heart, kidney and lung diseases are particularly affected by high temperatures and medications such as diuretics, sedatives, tranquilizers, and some heart and blood pressure medicines may make hyperthermia more likely. The increasing popularity of electrics warmers: grips, vests and seats, enable riders to ride all year-round and can safeguard older riders from age-related effects. Several riders mentioned that they do use some form of electrics warmers. Such a remedy may keep aging riders safer on the road.

Visit us at WWW.MCNEWS.COM • MAY 2009 23
Feature

Safety in Two-Up

Though most prefer to ride alone, 44% said they sometimes or often carried a passenger. However, 53% of all respondents said they rode more cautiously when there was someone on the back. Accident causation studies and NHTSA statistics consistently find that passenger fatalities are a tiny portion of all rider fatalities. Passengers may be a secret safety technique riders don’t even know they employ.

Rural Riders

While 54% reported that they commuted on the motorcycle either year-round or during the riding season, they still indicated they rode more miles in recreation than for transportation. Most respondents rode more miles on rural roads and freeways than on city or suburban streets. Returned riders rode less often and for fewer miles and were more likely to use their motorcycles only for recreation.

Rural roads are also more likely to have bad pavement and loose gravel or road debris—something that was indicated as contributing factors in many of the crashes described by survey participants and in the Monash studies as well as leading to single vehicle crashes. While less multi-vehicle accidents happen in rural areas, the increased bends, animals and road conditions may simply result in a trade-off of risks. The increase of older riders dying in rural crashes, then, could be simply a matter of exposure: More motorcyclists ride more often on more secondary roads and highways than in the past.

However, NHTSA statistics show that Emergency Medical Services response time is far slower in rural areas. As a result, riders may not be brought to Trauma 1 hospitals which are found in urban areas and are the best suited for treating brain injuries. Prompt treatment and arrival at hospital is extremely important in serious injuries no matter what age the rider is and that’s particularly true in terms of brain and chest trauma. However, as the University of Michigan Transportation Research Institute study suggests, the age of the rider can affect his ability to cope with massive injury and survive it.

The increased medical response time and unavailability of Trauma 1 hospitals coupled with age-related health problems and a lessening ability to endure injury and recovery may also factor into the number of older rider deaths rather than the story we’ve been told by the media.

Speed Is of the Essence

Virtually all older riders admitted they exceeded the speed limit, but it was fairly evenly divided between those who claim to do so rarely (28%), or sometimes (32%), and often (37%). It was also fairly evenly divided between those who said they rode an excess of 5 mph over the posted speed limit and 10 mph over. A great number said they sped to keep up with the flow of traffic or to go slightly faster than traffic and claimed it was safer to ride that way. Respondents had a safety rationale for where and when they exceeded the speed limit: They sped on freeways/interstates; rural highways or other open roads; and in clear, dry conditions with light traffic. These are also the conditions during which most fatal crashes occur on those same type of roads.

While almost all respondents admitted speeding, less than half had ever received any kind of traffic ticket with speeding tickets accounting for most of them (82%). However, most of the tickets (37%) for any reason were awarded when the riders were in their 30s or under and just 25% of the tickets were awarded when the riders were in their 50s. As the one joker put it, “I’m getting craftier as I get older.”

According to respondents’ reports on their own crashes, speeding was rarely a factor. Rather it was inappropriate speed for the conditions—as in crashes that occurred on exit ramps.

You’re Getting Older—I’m Not

Only 38% of the respondents were aware their age had a negative effect on their riding and less than 44% of those riders had noticed a change in their response time. A majority of them, though, claimed that any physical effect of aging was offset by increased skill, training, or taking less risk.

Steve D., 47, wrote that he was “probably more skilled physically when I was in my 20s.” Though he says he gets tired faster, is more susceptible to temperatures and his joints hurt now it’s offset by experience and maturity. But he was “trying to slow down” and can concentrate better. Steve has ridden 31 years, though, with occasional breaks totaling 4 to 5 years. He rides a 1999 H-D Dyna Wide Glide and a 1939 H-D Knucklehead Chopper.

Other effects of aging were sometimes mentioned: Deteriorating night vision and balance; processing information more slowly; more aches and pains; less endurance; and the need for more frequent bathroom breaks. However, respondents were equally divided on whether their riding companions were showing signs of age—issues of balance and response time were most often noted.

Older = Better?

While few riders saw physical effects of aging on their riding, a great many riders could point with confidence to positive changes from growing older: Several mentioned they had stopped drinking when riding. Many said they had slowed down and weren’t driven by aggression or testosterone. The majority said they didn’t take as many risks, were more deliberate and cautious in decision-making. The majority thought they were better riders as a result of more training and made better choices in terms of riding companions than they did when they were younger. But primarily they thought it was experience that made the difference both in ability and safety: They were surprised on the road less often, made better choices, were more aware of developing situations and knew what to do as well as how to do it. Steve D. speaks for many of the survey participants when he wrote, “I’m a lot smarter rider than I used to be.”
I’m better at seeing trouble before I ride into it. My “sixth sense” for idiot cagers is better. I’m diligent at knowing where my safety zone is located at all times.”

For some, these changes and this experience was a result of learning how painful injuries can be and that they weren’t immortal. “There is no substitute for experience,” said AJB Fine, 48. He says he’s a better rider now because “life is more precious to me now than when I was 28 and single.” He’s been riding 20 years and owns a 1992 BMW R100GS and 1997 Honda CBR1100XX.

The majority rated themselves as “excellent” or “very good/above average” as motorcyclists. A further 30% say they are “good/average.” Only one rated herself as “somewhat below average” and one rider rated himself as “poor.” Self-assessments were understandably biased, and even new riders with very little saddle time or miles of experience and riders who had collected multiple tickets or had multiple crashes in the past five years rated themselves as “above average” motorcyclists.

The high value riders placed on experience and age was evident in the 53% who felt that they were safer on the road than younger riders and the 57% who didn’t feel superior as riders to motorcyclists who were older than they were. When it came to who they thought would be more likely to be in a crash this year, respondents resoundingly thought experience mattered: 67% thought new riders of any age were the most likely to crash followed by younger riders (35%) followed by returning riders (32%). Only 4% thought that riders older than they were would be more likely to crash. From their responses it’s clear they think recent experience—and lots of it—would be the relevant factor. John Deurbrouck, 45, said, “Honestly, I don’t even think it’s a function of age, but more a function of time in the seat.”

Risk Perception

Older riders were aware that riding was dangerous—but 67% percent felt that riding was either high or moderately risky. Almost all respondents knew at least one rider who had died and a great many more knew riders who had been injured. Only one person said that a friend’s death had stopped her for riding for a short time until she got perspective on his death. Almost all those who had been in crashes had been injured—though most injuries were slight to moderate. Several riders mentioned having been injured or realizing their mortality or how they could be hurt had changed their riding styles to one that took less risks. Respondents were even divided between their estimation of being in a crash as average or low.

The MCN questionnaire results mirror a 2006 study, “Risk and Motorcyclists,” done on Scottish motorcyclists. All age groups were studied and pointed to general attitudes about motorcycling’s risk as well as how older riders see themselves and their chances. Older Scottish riders were just like their American brethren; on average, they thought that they were less likely to have a crash than others of the same age and sex. A significant number (42%), like their American brethren, felt that though the risks were high, they didn’t think it applied to them because they wore protective gear and were good riders.

Over 60% of older riders participate in training and track days to improve their riding skills.

Experienced Scottish riders—like American riders—were more likely to discount the risk of motorcycling. One of the cardinal rules for those who study risk is that people perceive less risk in situations that are under their personal control. Older riders who believe they have done all the right things—gotten trained, wear gear, slowed down, don’t drink, ride with like-minded friends—may feel that the risks of motorcycling are controllable and thus both motorcycling and their personal risk is lower than for other riders. Like their over-confidence in personal protective gear and their belief they are excellent or very good riders, Americans may be taking on very more risk than they think they are.

A High Value On Training

The majority of respondents said they recommended rider training to many—even hundreds—of people. They also overwhelmingly believed (79%) that rider training is effective in producing safer riders and 63% felt that more training would make riders even safer. However, 59% thought that rider training had to improve and, particularly in terms of real-traffic/on-road training and basic training classes, should be lengthened to allow greater skill acquisition. A further 64% thought that the motorcycle license test needs to be stricter and should be done in traffic, require more realistic road speeds and harder skills test such as more typical corners. Several recommended that the proposed European Directives for motorcycling licensing be the model. Others recommended tiered or graduated licensing and/or mandatory training (for drivers as well as for motorcyclists) as well as a requirement that proof of training and/or licensing must be in hand before a motorcycle can be purchased.

Safer Than Portrayed

- The portrait of the older rider—whether new, returning or continuing—is someone who wears a helmet and safety gear, is licensed, sober, trained and actively pursues more training opportunities, puts in a great many miles under a wide variety of conditions, rides within their limits, resists peer pressure, chooses safe traveling companions and actively attempts to employ strategies to lower risk. They have very strong feelings about safety and belief that training is good—but that it needs to be better, and that licensing should be stricter. They’re aware that they’re growing older and have pursued a more cautious and hazard-aware approach to riding as they get older.

- The portrait of the older rider, then, is the polar opposite of the older rider portrayed in the media. Instead, as a group, they’re the poster children for the basic safety messages MSF and NHTSA promote. It’s extremely impressive and our hats are off to all of them (and the fact that most of us at MCN are 40 Plus has nothing to do with our admiration).

So how did respondents do in terms of crash-involvement themselves?

Under-Represented in Crashes

First, we’ll look at the national picture: Since the average age of motorcyclists is somewhere between 42 and 47, well over half the motorcycle population is 40 or older. All else being equal, if more than half of the deaths were in this group, that would be considered the expected contribution—it wouldn’t be seen as abnormal. However, according to NHTSA’s Traffic Safety Facts 2007, 49% of all motorcycle fatalities were riders 40 and older. Far from being more at-risk, then, older riders are under-represented in fatalities. Despite the
number of older rider fatalities, they may actually be safer motorcyclists.

And this is what studies done at reputable transportation research centers both here and abroad found: Older riders aren’t dying in untoward numbers for their proportion of the motorcycling population. In fact, older new riders have fewer crashes than younger new riders and returning riders are safer than continuing riders. Those findings aren’t covered in the media.

Our respondents, of course, were alive—and that alone says a great deal. However, it doesn’t mean they were crash-free. Rather, the opposite is true. In our survey, fifty riders (40%) had never crashed in all their years of riding while 73% (60%) had at least one crash each. Collectively, those 73 riders had a lifetime crash total of 380—or an average of 5.2 crashes per rider with 51 crashes occurring in the past five years—or an average of 0.69 crashes per person. However, several had only one crash and it sometimes occurred decades ago, while some riders had multiple crashes.

The crashes were the normal assortment of single-vehicle, multi-vehicle, loss-of-control, left-turners, rear-enders, broadsides and so forth as in the general riding community. Analyzing the results suggested a definite crash pattern: The majority had at least one or more crashes within the first few years of riding. Then they tended to have a long period with no crashes at all, then another crash or more than one and another lull—and repeat.

So are returning riders at higher risk of crashing than continuing riders? Survey says no: 26% continuing riders and 29% returning riders had crashed in the past five years with no statistical difference between the two. A study done by Monash University Accident Research Centre, “Crashes of Older Australian Riders,” examined over 1000 riders and found that returning riders had a lower crash risk than continuing riders. The story the media tells us about rusty skills doesn’t seem to measure up to real life experience—or studies.

On the other hand, 50% of the novice older riders had one or more crashes within five years—something also found with continuing riders’ history and of the prior experience of returning riders. This confirms what the Hurt Study found in the early 1980s—and more than one recent study by Monash University Accident Research Centre reconfirmed: The first years of riding are crash-prone. Cumulative experience over time may be an underestimated factor in motorcyle safety, giving a unique advantage to older riders whether they had ridden continuously or returned to riding. However, the Australian study found that older new riders were safer than younger novice riders. Age, as these riders claimed, may have an advantage if only because of experience over time in real-life traffic.

The media stories on older riders, however, consistently stress the need for training and continual training to be safe on the road. So how did that part of the story measure up?

Training to Crash?

As discussed earlier, 94% of the novice 40 Plus riders in the questionnaire had taken a basic rider training course. A full 75% of returning riders had taken some form of training and so had 68% of the continuing riders. This reflects older riders’ belief that training reduces the risks of riding. However, when the five-year crash rate is matched to training versus non-training the results may be surprising:

More than half (53%) of the new 40 Plus novices that took the Basic Rider-Course had already crashed. Of the trained novices that crashed, 37.5% had already had two crashes. Almost 30% of returning riders who took training have crashed, however, only 20% of the untrained returning riders crashed.

When it comes to continuing riders who took some form of training, 28.5% crashed within the past five years while 36.8% of continuing riders who had never taken any form of training had crashed during that same time. However, the average mileage per year for continuing riders who hadn’t taken training was more than triple the average mileage of those who took training courses (26,714 VMT vs. 7,339 VMT). Continuing riders were also more likely to ride in all weather conditions and at night. Studies on risk and on accidents consistently find these significantly increase a rider’s exposure and results in a higher percentage of crashing.

The Monash study “Crashes of Older Australian Riders,” also found that training was implicated in a higher rate of crashes. “Effectiveness of motorcycle training and motorcyclists’ risk-taking behavior,” a 2007 study published by the National Transportation Research Board found that “those individuals who took beginning rider training courses were more likely to be involved in an accident than those who did not, and that those who took the beginning course more than once were much more likely to be involved in an accident.”

The idea proclaimed in the media stories that early and continued training is what the older rider needs to avoid crashing clearly falls short.

The 40 Plus riders—whether novice, returning or continuing—have heard and responded to what the experts say makes us safe on the roads. In contrast to the media’s portrayal, they could be said to be the safest riders on the road.

But, as their crash history relates, it’s not altogether effective. Clearly, the reasons for the rising death toll are not as simplistic as the media, the NHTSA and the MSF would have us believe. Just as clearly, the media portrayal of the older rider has little relation to the real 40 Plus rider on the road.

Over 40 riders believe that’re better riders now: smarter, more cautious, less driven by testosterone or influenced by peer pressure.
Impression

Metzeler Roadtec Z6 Interact Tire

Metzeler, the only major manufacturer producing tires exclusively for motorcycles since 1863, has revised its popular Roadtec Z6. It’s now called the Roadtec Z6 Interact, because its patented new tuned carcass directly interacts with the performance of its compounding.

First introduced for the sport-touring market in 2003, the Roadtec was initially developed for sport-touring motorcycles. The previous generation of Roadtec technology included a patented zero-degree continuous strand of braided steel wire, each wrap grouped in segments and spaced within one millimeter, all tensioned identically. Like the latest generation of Roadtec, this continuous strand was positioned just under the existing zero-degree fiber ply belts and spanned the entire tire’s profile.

Interact Modular Winding Process

While the Roadtec Z6 Interact outwardly appears identical to its predecessor in profile, tread pattern and its range of available sizing, internally the big difference is how the continuous strand of over 120 rings are now individually tensioned. Metzeler’s engineers focused on the guitar for inspiration, specifically how differing the tension of the (steel) strings impacts the flexibility and movement of each wire individually. Within the carcass of the Z6 Interact, the centerline section uses a greater wire wrapping tension than that applied to the sides. This variance results in less tension than that applied to the sides. This variance results in less tension than that applied to the sides. This variance results in less tension than that applied to the sides. This variance results in less tension than that applied to the sides. This variance results in less tension than that applied to the sides.

Interact High-Silica Compounding

The Z6 Interact also receives new high-hysteresis compounding; hysteresis is the actual property of the rubber’s performance when under stretch and stress. Metzeler has raised the percentage of silica content from 30% to 65%. This increase, combined with a new mixing process, results in more homogeneous compounding, reduced tearing and improving performance both in wet and dry conditions. A new mixture of high-synthetic polymers remains softer at low temperatures, while significantly lessening the amount of rounding or tearing of the sipe’s stressed edges. By maintaining a sharp and uniform tread pattern throughout the tire’s lifespan, overall performance will remain consistent, especially during wet use and after the tires incur significant mileage.

Metzeler recommends that the Roadtec Z6 Interacts be inflated to OE-specified tire pressures. With proper inflation, riders can expect the tires to perform well for 8000 miles.

Interact Impressions

To test the latest Roadtec we didn’t utilize any of the suggested current-generation sport-touring motorcycles for which Metzeler intends the Interact’s fitment—not that there is anything wrong with them. To the contrary, I was well aware that the participants at the Interact’s US launch would be riding a variety of ’09 sport tourers, naked bikes and supersport equipment. So, instead I elected to use one of my personal machines, a 1988 Honda NT650 Hawk GT, which occasionally serves as a very appropriate test mule. This particular Hawk is nothing special, but has been fitted with wider 3.50” front and 5.50” rear rims, respectively, for use with modern tires. Its familiarity and light handling make it useful for evaluating new tires on unfamiliar roads.

My day of riding included just over 160 miles of canyons and two-lane roads around Palm Springs, California, under sunny conditions with decent riding temps. The route included open, curving roads for high-speed touring, as well as slower sections and tight, twisty stuff, a versatile test for the Roadtec Z6 Interact.

Before the ride we took the time to measure and compare the circumferences of the new tires against the used rubber Metzeler’s technicians removed from our motorcycles. Being aware of such data can be very useful. In fact, it is almost critical when the task involves comparing and evaluating different sets of tires back to back. After a leisurely breakfast, we started our ride. Even riding through town we immediately noticed a change in handling from that of the well-used tires removed the day earlier. Our initial impression was that the Hawk’s steering effort and response was lighter and quicker than when using the previous non-OE rubber. Because we had previously measured and compared each tire’s mounted circumference and the differences were negligible, this initial impression was not the result of differing geometries, but rather the product of the pliable Interact carcass and matched profiling generated by Metzeler’s Contour Modeling Technology (CMT).

Once we reached the canyon roads the new tires scrubbed in quickly with little effort, although it was nearly impossible to use 100% of the front tire’s available profile. One standout impression was that the Hawk’s steering effort and response was lighter and quicker than when using the previous non-OE rubber. Because we had previously measured and compared each tire’s mounted circumference and the differences were negligible, this initial impression was not the result of differing geometries, but rather the product of the pliable Interact carcass and matched profiling generated by Metzeler’s Contour Modeling Technology (CMT).

As far as grip, the Metzelers happily turned-in with ample traction and no cornering instabilities. Our total man/machine test weight was less than 550 lbs., so the tires accumulated little visible wear in over 160 miles of aggressive riding. Since the Hawk barely generates enough power to roughen paper, front or rear traction was never in doubt, nor was any obvious tire wear apparent on any of the other test bikes in our group.

Long-term, we suspect the Metzeler Roadtec Z6 Interact tires will exceed our expectations, as will their performance in wet conditions. Their proven tread pattern has deep, wide sipes that extend to the outermost edges of their profiles. This, combined with the use of high silica compounding and their new compliant carcass, should place them very high in overall wet weather performance, a crucial feature for sport touring applications.

Tire costs were not provided at the time of launch, but are estimated to be only 2% higher than the previous Roadtec Z6. Additionally, a complete range of sizes, both in diameters and widths will be available this summer, and the Z6 Interact will also be available in a heavier construction, using two additional plies for higher load applications.
LOOK AROUND AND you’d be hard-pressed to find a category of streetbike that is more narrowly focused than the chopper. Borne out of the post-WWII practice of bobbing or “chopping” extraneous items off one’s motorcycle in order to make it lighter, faster and create an individual look, the chopper craze began in earnest in the ’60s, when rebellious and artistic types took the genre a step further by radically stretching and raking chasis to almost ridiculous proportions in an effort to create some of the wildest motorcycles imaginable. Most notably associated with outlaw biker gangs such as the Hell’s Angels, the street chopper scene was considered unfashionable by mainstream motorcycle then, the domain of the so-called “great unwashed.” Chopper culture headed underground in the late ’70s, only to reemerge 20 years later, glamorized by the creations of modern-day custom bike icons such as Jesse James, Arlen and Cory Ness, and those embattled Teutuls—Paul Sr. and Jr. Nowadays the chopper scene was considered unfashionable by mainstream company history, it measures a whopping 71.24” with a steering head rake of 38º and features a highmount steering head that adds to the chopper aesthetic by creating a gap at the front of the Fury’s stretched teardrop fuel tank.

The Fury’s chassis is definitely uncharted territory for Honda. Boasting the longest motorcycle wheelbase in company history, it measures a whopping 71.24” with a steering head rake of 38º and features a highmount steering head that adds to the chopper aesthetic by creating a gap at the front of the Fury’s stretched teardrop fuel tank.

Chassis, Suspension & Brakes

The Fury’s chassis is definitely uncharted territory for Honda. Boasting the longest motorcycle wheelbase in company history, it measures a whopping 71.24” with a steering head rake of 38º and features a highmount steering head that adds to the chopper aesthetic by creating a gap at the front of the Fury’s stretched teardrop fuel tank.

The Fury’s chassis is definitely uncharted territory for Honda. Boasting the longest motorcycle wheelbase in company history, it measures a whopping 71.24” with a steering head rake of 38º and features a highmount steering head that adds to the chopper aesthetic by creating a gap at the front of the Fury’s stretched teardrop fuel tank.

In keeping with its chopper theme, the Fury sports a rather scrappy 90/90-21 Dunlop front tire mounted on a nine-spoke alloy rim paired with a 200/50-18 Dunlop on the seven-spoker in the rear. A semi-floating single 336mm front brake rotor is clamped by a rather smallish-appearing two-piston caliper, while the rear brake features a 296mm rear rotor and single-piston caliper. Unfortunately, our First Impression did not include any seat time on the ABS-equipped version of the Fury which, incidentally, will be available only in the black color scheme with the blacked-out, redpinstriped wheels. Honda did tell us that the ABS features a revised functionality in that it is only linked from rear to front, and not both ways, as found on the Gold Wing, ST1300 and Interceptor.

Riding Impression

There isn’t an excessive amount of “fury” in the Fury’s fuel-injected V-twin, just enough to get the job done. Its torque won’t snap your neck as you run from gear to gear, but by the same token it does not impart the rubbery feel of mid- and smaller-displacement cruisers or those with less torque low in the rev range. The Fury’s power output is far less muted than its exhaust, which imparts a soulful rumble that is barely audible above normal windblast. The engine gets all of the Fury’s claimed 663 lbs. moving in a hurry and will smartly run from gear to gear, although the engine could do with just a tad more overrev than its rev limiter allows. We occasionally found ourselves bumping into the rev limiter just before making the shift to second gear when pulling through first from a dead stop; better to short-shift the Fury than to try and wring its neck. Loping along in any gear is a pleasant experience, the Fury’s dual balancers quelling a substantial amount of unwanted shake from the engine. However, on freeway jaunts we did notice some
buzz through the bars once the speedometer topped 60 mph, a feeling substantiated by the distorted vehicles and other objects in the rearview mirrors.

But from stoplight to stoplight, the Fury is more congenial than a chopper has the right to be. Clutch lever action is silky but seems to engage and disengage the Fury’s clutch very early in the lever throw—you’ll spend minimal time in the friction zone—and the bike’s five-speed transmission shifts equally as smoothly.

The long wheelbase and rakish front end of the Fury make it freight-train stable in a straight line, and yet its low-speed turning prowess is commendable; dropping in and out of turns is practically effortless despite the 38º fork angle. The same basically holds true at higher speeds, although scraping the feelers on the forward-mounted foot controls happens long before any sketchy feeling is encountered at the handlebar.

Ergonomically speaking, the Fury’s 26.7” seat height combines with a seat/bar/peg relationship that appears to favor shorter riders. Some testers over 5’8” complained that the Fury’s airbox forced their right leg out away from the motorcycle, an uncomfortable situation. Another source of discomfort could be found in the heat that radiates through the bulging clutch cover on the right side of the Fury’s engine, something you’ll notice when you put your foot down at a stoplight. On the plus side, the sweep of the Fury’s drag-style handlebar is very comfortable. Also, we noticed while on the freeway that the instrument pod does a pretty good job of deflecting air up and over the rider’s helmet, reducing helmet buffeting and the dreaded “main-sail effect.” Riding at a relaxed pace, a Fury pilot could probably drain the bike’s 3.4-gal fuel tank without feeling whipped from the trip.

The fork and shock work well when the Fury is used for its intended purpose, short-distance cruising. However, during our ride aboard the bike we encountered a long series of square-edged bumps in the pavement while riding at about 60 mph. The resulting shockwaves through the seat and the bars were tolerable, but we were happy when that part of the ride was behind us. Overall, we’d give the suspension passing marks for functionality.

Coming down from speed exposes a vice, though. When applied by itself, the front brake is high-effort at the lever and lacks strong stopping power. Using the rear brake in concert with the front is recommended.

One gripe that we do have is not with the ride but with the cosmetics. The welding quality on the chassis is hideous and detracts from an otherwise attractive package like a scar on the cheek of a supermodel. Honda officials confirmed that our test bike was a production line unit and that word had already been sent to Japan to try and improve the appearance of the welds.

Final Thoughts

With the Fury, Honda has taken a decades-old motorcycle concept and “Honda-ized” it, infusing the traditional chopper’s hardnosed styling with functionality and reliability to create a civil motorcycle with an outlaw look. As such, like those bankers and lawyers who can’t wait for the weekend to break out their do-rags, leather jackets, and temporary tattoos, it is likely to be dismissed—and maybe even resented—by real hard-core custom-bike types, even those who have come to favor a metric cruiser brand over one made in America. And that would be too bad because, for any other motorcyclist interested in radical custom choppers, all it would take is one ride on the Fury to realize what they are missing.
Back in the mid-1960s, it seemed as though Britain was on the vanguard of all things cultural, especially for motorcyclists. The great English marques were in their heyday, mods and rockers were at each others’ throats, rock and roll was finally emerging, and legendary hangouts like the Ace Cafe were in full swing. In 1964, a young Englishman named Jeff Smith would do the Crown proud by winning the FIM 500cc Motocross World Championship, taking the title from defending Swedish champion Rolf Tibblin. Smith won again in 1965, the last time a four-stroke machine would dominate the competition for some three decades hence.

Smith’s conquest of the grueling back-to-back motocross championships was performed aboard a modified version of BSA’s B44 Shooting Star model. His B44 street scrambler was modified for motocross duty with some factory trick components, including a 7” rear brake, 20” front wheel, lightweight Reynolds 531 tube frame, and an all-alloy motor with chrome bore. Smith’s bike weighed only 250 lbs. wet, resulting in a relatively flickable machine with a power-to-weight ratio well suited to this type of racing.

Motocross fans expressed demand for such a machine from the factory, and so BSA worked quickly to capitalize on Smith’s success, introducing the first off-road motocross model B44 “Victor” at the 1965 Earls Court Show. Several variations of the Victor were produced, though very few of them bore much resemblance to Smith’s triumphant motocrosser beyond displacement and general appearance. The American-market “Victor Special” (sold in England as the “Victor Enduro Trials”) looked the part, though BSA skimped on many of the functional components that distinguished Jeff Smith’s machine from the mass produced version. The rear brake shrunk from Smith’s 7” to 6”, the front wheel was reduced from 20” to 19”, and the production frame didn’t employ the lightweight alloys utilized on the racer to keep weight down. As a result, the production Victor Special ballooned to over 300 lbs. wet.

In exchange for these cost saving measures, the Victor Special’s MSRP was a mere $895 for the ’66 model year. In England, a version of the Victor closer in spec to the original Smith racer dubbed the “Victor Grand Prix” sold closer to a whopping $1400, giving credence to BSA’s decision to keep the machine affordable.

The motor delivered its power to the multi-disc, oil-bathed clutch via duplex chain, with a traditional final drive by chain. The transmission’s four speeds were evenly spaced and well suited to the low-end grunt of the long-stroke thumper. A 32mm Amal carburetor was standard, as usual for a British machine of this vintage. As with other Amals, sticking floats, tuning maladies and the occasional bro-
ken slide being sucked into the motor were not uncommon.

All told, the Vic’ could scoot through the quarter in about 15.5 seconds at 85 mph, and onward to a top speed of approximately 93 mph—a scant 7 mph shy of the magical “ton.”

Front and rear suspension was carried over from BSA’s street bike parts bin. The front forks had 5.25” of travel, along with compression and rebound damping. The rear Girling hydraulically damped coil spring shocks were preload adjustable to three positions. Any serious motocrossing could overwhelm the suspension, but it was adequate for street use. With the short, 52” wheelbase of its single downtube cradle frame factored in, handling was a delicate compromise between the Victor’s two conflicting missions of off-road and on-road. Aftermarket modifications to remedy perceived suspension shortcomings were common as a result.

Instruments and electrics were traditional English. A classy Smiths speedometer housed an odometer and separate trip odometer, while power was supplied by Joseph Lucas, aka “The Prince of Darkness,” a reputation that endures and needs no further elaboration. Regardless, one cannot focus on purely functional issues when discussing any classic or vintage English motorcycle. This is an emotional topic. The Victor’s gorgeous, bulbous polished aluminum gas tank, high-side chrome exhaust pipe, and aggressive stance can melt the heart of any true motorcycle enthusiast. Not to mention its loping single-cylinder motor, which sings the thumper song of a time long since passed, when a Beeza ruled the track.

The American public at large was enamored with the Victor, and it sold well in 441 guise between 1965 and 1970. In 1971, its motor was punched out to 499cc, and it was refocused as the B50, but by then BSA was well on its way out of the American market.

As of press time, a nice vintage Victor 441 Special can be had for $2500-3500. Basket cases can be had for significantly less, while pristine or restored originals cost more. The vintage British motorcycle community is extremely vibrant, and BSA Victor parts are readily available. Prospective owners need only search the web for their local vintage English motorcycle club, where a wealth of experience and information awaits. A good place to start online is http://www.britbike.com.

Editor’s note: MCN would like to thank motorcycle collector Tom White for allowing us to photograph his beautifully restored 1966 BSA 441 Victor Special for the purposes of this feature. You can check out more of White’s expansive vintage bike collection at www.earlyearsofmx.com.

Above: The Victor’s “round barrel” 441cc single was actually based on BSA’s 250cc cases. The compact unit made 30hp.

Above: While Smith’s factory bike featured a 7” rear brake, the stock Victor rear brake measured 6” in diameter.

Above Left: The Victor’s 32mm Amal carburetor. The brass plunger in the center is the “tickler” or starting enrichener.

Above Right: Smiths speedometer also featured a tripmeter.

Above: After a successful six-year run, the 441 Victor gave way to a more powerful BSA single, the B50. Today the bike is highly regarded by collectors as a bargain classic.
Reader’s Rides

Jeff Odland’s 2004 Ducati ST4S

Hailing from Snohomish, Washington, Jeff Odland wanted a sport touring bike that could be ridden to, on and away from the track. Buying and personalizing this 2004 Ducati ST4S ABS has created the perfect motorcycle bike to suit his needs.

I wanted a sport touring bike with the emphasis on sport, one that could be ridden across the state, or farther, for a track day, ridden at the event, then onward for more touring. I wanted a V-twin for its power characteristics. All my previous road bikes (except for a Honda CBX and a Norton Commando Combat) were in-line fours, but then a Suzuki SV650S came into the stable during a time when getting into racing was in the plans. That never happened, but the bike sold me on the traits of a V-twin, or V-twins for its power characteristics. All my plans. Ditto for the Aprilia Futura.

Why the Ducati? Truth be told, if the chance to test ride a Triumph or BMW would have presented itself, I may have ended up on one of those. The Moto Guzzi V11 Le Mans Rosso was sadly ruled out due to concern over parts and service availability, as well as aftermarket options. Ditto for the Aprilia Futura. Saying that I could not be happier with my bike. She simply does everything I ask of her. Yes, my Duc is a girl. Her name is Rachel, named after a stunning red-head, hence the bike’s name. And yes, the original Rachel was a stunning red-headed Italian, too!

For readers who may not know the difference between the ST4 and ST4S, the S model comes equipped with a titanium-nitride coating on the Showa fork legs, an Öhlins shock, Marchesini forged five-spoke wheels that are 1 lb. lighter in rear and 2 lbs. lighter in front, Brembo “Gold Series” brakes with slightly thicker discs, and a swingarm made of aluminum rather than steel. The S model also has the option of ABS.

A couple things: 1) I typically don’t do the work myself due to time constraints and lack of skills. And I do value developing a good relationship with my local shop. For this reason, the cost sometimes includes the labor rate. And 2) The bike was purchased used, with some of the modifications already done. Although most were cosmetic only. Buying used can sometimes mean getting expensive modifications for pennies on the dollar.

This presents buyers like me an opportunity to get more bike than they could afford otherwise.

Handling
Completed by GP Suspension, Rachel’s suspension rebuild included stiffer, constant-rate shock and fork springs, shims, custom valving of the OEM Öhlins rear shock and OEM Showa forks, with new parts as needed. The rear end was also raised 10mm, made easy by the factory adjustment option. This enables quicker turn initiation. I had considered just going with new springs with Cartridge Emulators in the forks from Race Tech. This route for the forks was done on a past bike with very good results, along with installation of an Öhlins rear shock. GP Suspension explained the differences between their fork rebuild and the Race Tech solution, as well as the difference between OEM Öhlins and aftermarket Öhlins. The results convinced me the right decision was made.

This is the first bike I’ve owned that seems to force no compromise. Turn initiation is quick. Stability at speed is there. One can hold a constant radius turn as if on rails or change lanes at will. It doesn’t mind if you want to brake deep into the turn or ride ultra-conservative and get all the braking done prior to turn entry. On roads so tight that first gear is the only option, or in triple digit sweepers, the bike does as requested. The fork work took much of the shock out of high-speed compression hits. The adjustability of this bike’s suspension, which, in the hands of a novice could be trouble, was only made better by the modifications.

Satisfaction: Cost: $1033; Labor: 6.5 hours (included)

Comfort/Touring
The Sargent saddle was on the bike when purchased. It’s perfect. Comfort was never lacking, even during a two-week trip where virtually every day in the saddle started at 9 a.m. and ended at 5 p.m. The under-seat storage bin is great, and the foldaway cargo hooks come in very handy when more storage space is needed. I simply grab a bungee net and secure it over an Ortleib bag for additional waterproof storage on top of the pillion. Even if I had paid full list for the seat instead of it coming with the bike, this kind of comfort and convenience is hard to beat. And the saddle still looks brand-new after 20,000 miles.

Satisfaction: Cost: $449; Labor: N/A

The handlebar is equipped with a Throttlemeister cruise control with heavy...
bar-end weights. The Throttlemeister probably deserves a better rating, but I discovered that the majority of my riding has enough elevation changes and such that it requires more attention than I’m willing to give. The biggest advantage was the reduction of bar vibration with the heavy bar-end weights.

Satisfaction: ⭐⭐⭐⭐
Cost: $130; Labor: .5 hour

After considering Zero Gravity’s Sport Touring windshield, I opted for the Zero Gravity Double Bubble, which I purchased from my local Ducati dealer. The quality has left nothing wanting. My only hesitation with giving it a 5 is the amount of turbulence and buffeting I get from oncoming semis and side winds at highway speeds. I’m not sure if this is asking too much of the windshield alone. Cosmetically, it’s also much more attractive than stock. The bike currently has a different Zero Gravity windscreen on it, but I suspect I’ll go back to the Double Bubble.

Satisfaction: ⭐⭐⭐⭐
Cost: $90; Labor: 1 hour

Purchased from Seattle Ducati, CycleCat bar risers were chosen for their adjustability options over others. The increased comfort is more from the ability to get the angles right than it is from having the bars higher than stock. They have worked perfectly. The only complaint is cosmetic, as the CNC work was such that the materials have sharp edges vs. the softer edges elsewhere in the cockpit. The workmanship is superb, but they were not cheap, and I had to pay the shop for two hours for installation. The comfort is hard to replace, and sadly so are these bar risers; CycleCat has since gone out of business.

Satisfaction: ⭐⭐⭐⭐
Cost: $340; Labor: 2 hours

I installed a Gerbing’s temperature controller in order to modulate the heat level of my heated jacket. The ST comes standard with a BMW-style power outlet but its location is inconvenient and there’s no heat level control. Conveniently installed in the dash, this permanent installation provides a dial to control the heat. The power port is located at the crotch of the saddle, so plugging in the jacket is much easier. No dangling cords and easy heat level adjustment. It works.

Satisfaction: ⭐⭐⭐⭐
Cost: $90; Labor: 1.5 hours

With such a small cockpit, the Omni Ball RAM mount I purchased from Desmo Times is the only real choice for mounting such items as a GPS or PDA without getting in the way of the tank bag, radar detector controls, etc. It’s mounted on the top triple clamp and replaces the steering stem nut, and it is clean, simple, high-quality and easy to use.

Satisfaction: ⭐⭐⭐⭐
Cost: $95; Labor: 20 minutes

For long trips, a Moto Fizz tank bag from Aerostitch is used because it has a large storage capacity, abundant features, large map top and strong magnets. For other trips, a smaller Marsee bag is used.
Reader’s Rides

Satisfaction: ★★★★★
Cost: $127; Labor: 5 minutes

Motobags’ under-seat pannier storage liners create storage areas where, at first glance, you wouldn’t think much would fit. The pannier liners are great because you don’t have to take the panniers off when, say, checking into a hotel. The panniers come off easily enough, but the challenge then becomes making sure they don’t get scratched while carrying them to and from the hotel room, etc.

Satisfaction: ★★★★★
Cost: $164; Labor: 5 minutes

Performance

Rachel already came equipped with an exhaust system that was originally made by GiaCoMoto, which was bought from Ducati Performance. At $2097, the price of the system seems obscene, but given how well it looks and sounds, I probably would have lusted after it if I didn’t eventually end up buying it. It is also lighter than the OEM system.

Satisfaction: ★★★★★
Cost: $2097; Labor: 1 hour

The Yoyodyne clutch slave cylinder was also on Rachel when she was purchased, and has performed flawlessly. The feel, travel and pull of the clutch is perfect. That’s not to say when a dry clutch gets hot, it’s not finicky! But that’s not the Yoyodyne’s fault, of course.

Satisfaction: ★★★★★
Cost: $230; Labor: 20 minutes (included)

From early on in my riding, it seemed shifting up should be done via pushing down on the lever. At age 50, it took me awhile to get used to having a bike with GP shifting, but I’ll never go back. The unit has some adjustability which has helped.

Satisfaction: ★★★★★
Cost: $100; Labor: 10 minutes

I changed the countershaft and rear sprockets from 15T x 38T to 14T x 42T, lowering the final gearing considerably. The extra snap at lower speeds is also enjoyed. The price will be paid, however, at the end of a straight on the track. But given how rarely that happens, the lower gearing works well.

Satisfaction: ★★★★★
Cost: $214; Labor: N/A (included)

In search of more stopping power, Rachel uses Galfer brake pads—green in front, and black in rear. The only downside to the front pads is they can seem a bit aggressive until one’s motor skills have caught up to the task at hand; typically the first time riding the bike after being away for a while presents a couple of “holy crap” moments, but shortly thereafter, life is good. They’ve endured repeated hard braking sessions from triple digits in high heat on remote desert roads, with never a complaint of poor feel or fade. The rear pads were chosen for their relatively aggressive bite, something I appreciate given my dirt riding background.

Satisfaction: ★★★★★
Cost: $95; Labor: 1.5 hours

The stock axle plate covers are prone to bending during installation and removal, which makes rear wheel alignment difficult. Anything that can be done to ensure proper wheel alignment is a good thing, so I picked up a pair of aftermarket axle plate covers from Desmo Times. These include a sight window to aid alignment and are made of 6060 series aluminum for strength. They were installed while a new chain and sprockets were being installed.

Satisfaction: ★★★★★
Cost: $264; Labor: 5 hour

Why Modify?

Anyone who asks that question probably isn’t reading MCN! I mean, there are a number of reasons to modify a bike. Mine included dialing in my suspension—through trial and error—on my 27-mile “test track” virtually in my backyard, and accomplishing the lifelong goal of embarking on a two-week road trip. I covered 10 states and 4500 miles and the only Ducati I saw the entire time was mine!

Regardless of your motivations, however, it is my opinion that you should stay true to your bike’s original design intent. In the case of my Rachel, that meant not losing sight of the bike’s focus on handling prowess, low weight, and relative simplicity. Thanks to a little help from the aftermarket, Rachel is as beautiful today as she was when she was brand new.

Resources

GP Suspension
Suspension mods; 503-723-7793; www.gpsuspension.com

Sargent Cycle Products
Seat; 800-749-7328; www.sargentequipment.com

Throttlemeister
Cruise control; 414-464-6060; www.throttlemeister.com

Zero Gravity
Windscreen; 805-388-8803; www.zerogravity-racing.com

Gerbing’s Heated Clothing
Temperature controller; 866-371-4328; www.gerbing.com

Pirates’ Lair
ZTechnikTechMount; 828-628-7093; www.piratesk12site.net

Desmo Times
Omni Ball RAM mount, axle plate covers; www.desmotimes.com

Aerostitch
MotoFiz tank bag; 800-222-1994; www.aerostitch.com

Motobags
Under-seat pannier storage liners; www.motobags.com

Ducati Performance
Exhaust system; www.ducati.com

Yoyodyne
Clutch slave cylinder; 973-386-0040 www.yoyodyneti.com

Ducati Seattle
GP Shifter, Retime Cams, Sprockets; 206-298-9995; www.ducatiseattle.com

Galfer
Brakpads; 805-988-2900; www.galferusa.com

Lojack
Security system; 781-251-4700; www.lojack.com
A

N OLD AD campaign designed to endow a certain small SUV with a youthful, sporty personality used as its catchphrase, “Boredom hurts.” And that’s too true. Though often trivialized, the problem of under-stimulation is actually quite serious. Think about it—a great many youngsters engage in criminal activity partly because they have nothing else to do. Their lives are too unstructured, leaving them with lots of time on their hands, no supervision and a craving for some kind of excitement. If they don’t have any constructive options readily available, the easiest way to generate a burst of adrenaline is to do something dangerous.

Or take the depressed adult who can’t point to anything in particular as the cause of their feelings of gloom; everything seems to be running smoothly in their day-to-day existence. But that might be the exact problem—without any significant challenge, life can become a tedious repetition that saps energy and drains one’s sense of purpose. Just as a kid might vandalize or steal as a way to conjure a sense of vitality, adults who are bored in their jobs and marriages can start political fires at work or have an affair to add spice to their dull routines. And, just like the juvenile offenders, these grownups may do extensive damage to their own and others’ lives in the process.

Boredom doesn’t just hurt the bored person. And you don’t have to be a rabid thrill-seeker to launch counterproductive, or even outright destructive, efforts to relieve the all-too-real pain of under-stimulation.

Consider your own experience with even low-grade boredom. Does it tend to make you irritable and cranky? Do you get lethargic and unproductive when you have only a few small things on your to-do list? Ever find that everyday hassles are a lot harder to plow through when you’ve got nothing particular to look forward to afterward? While it’s far from a comprehensive treatment for depression, staying busy serves to keep many people from sinking into dark moods. Passivity, interpersonal withdrawal and the loss of interest can be overlapping manifestations of both boredom and depression, and each can make the other worse.

Obviously, motorcycling can provide us with a rich supply of excitement, challenges and diversions, especially given its many social, mechanical and technical dimensions. I assume most MCN readers are quick to remedy boredom by saddling up (with or without the company of friends) or opening a toolbox. And riding and wrenching can both be excellent solutions to the problem of under-stimulation. But there is a balance to be struck.

The opposite problem, over-stimulation, may be just as easily acquired in the course of taking on a ride, or garage project that exceeds one’s energy level or tolerance for frustration. And like the kid being hauled off to detention or the adult regretting their mid-life crisis “fix,” we can look back on the boredom we set out to escape as suddenly the greener of the two pastures. And we are especially likely to fling ourselves into one or another form of overload when we have been suffering extreme levels of tedium, which can be accompanied by disturbing feelings of meaninglessness.

So, a person trying to offset the mind-numbing repetition of their daily grind might make overly ambitious plans: an extra-long-distance tour, a trackday with much faster riders, or an engine overhaul that far exceeds the difficulties of prior tinkering. On a smaller scale, one might use the evening commute as an opportunity to counterbalance the workday hours spent confined within a soulless cubicle.

The reckless abandon exhibited on that ride home might look like the exuberance of liberation, but it’s more likely a release of aggression—an invigorating retaliation against a world that has felt frustrating and dehumanizing. As such, it contains potentially destructive elements, including defiance of traffic laws, competition with others on the road, and the wanton pursuit of sensations of speed and power. Motorcycles, of course, can provide these in abundance, and indulging in those visceral pleasures can be tempting compensations for the frustration of feeling trapped in a set of monotonous obligations.

Offer a starving person a bountiful feast, and they may well gorge themselves to the point of vomiting. Offer a desperately bored person a source of extreme excitement, and they may jump in way over their head.

For many people, this cautionary note may seem like pointing out the obvious. But under-stimulation can be insidiously hard to recognize in one’s own life because it’s a potentially severe form of stress that comes from an absence, rather than a more readily identified presence.

The more a person is aware of what they’re doing emotionally, the more they can utilize rational thinking in the process of choosing their actions. While we cherish the variety of thrills motorcycling can provide, we need to be conscious of the way these can become problematic as counterweights for intense under-stimulation elsewhere in life. If, for example, we rely upon the adrenaline rush we get speeding away from the office as a way to combat occupational burnout, we might not do what’s necessary to change our stagnant work situation for the better. And we could also end up generating the excessive “excitement” of ambulance rides and overwhelming medical expenses.

Ironically, there are also many motorcyclists who ride or wrench as a way of dealing with over-stimulation in other areas of their lives. For them, the saddle or the workbench is a refuge from the barrage of frenetic activity with which they must constantly contend. They take comfort in the reduction of stimulation they experience as they ease out the clutch and relax into the rhythms of loping exhaust pulses and switchback curves. Or they find peace of mind in the way mechanical problems always have clear, logical causes and solutions that can, with enough skill and deliberation, always be solved. Their problems at work or in relationships with others can rarely be cured by such methodical analysis and independent actions.

Of course, the same potential exists for overusing such counterweights to over-stimulation. There is a difference between taking painkillers to cope with occasional ailments and becoming addicted—employing them full-time to escape the challenges and limitations of one’s life.

All that said, isn’t it amazing and wonderful that motorcycling can allow us to manage either of these two undesirable extremes? It can energize us when we’re under-stimulated and calm us down when we’re over-stimulated. So much in life is a matter of establishing and maintaining our equilibrium.

Alas, what works at one stage may not be useful at another. Things are always changing, even if the change is that something we used to find exciting has become routine, or what used to feel manageable has worn us down. Our experience can shift even when our circumstances remain constant.

So long as it doesn’t become a substitute for problem-solving in other aspects of our lives, motorcycling gives us a powerful tool for restoring and keeping our emotional balance amidst the opposing stresses of over- or under-stimulation.
In my neighborhood, there are just a few homes that could accurately be described as “custom.” With a unique floorplan and an individual outer appearance, these select buildings represent a huge investment in time, money and attention to detail. Most other houses in the area are classified as “semi-custom,” although the only variables are a few minor details such as the choice of appliances, flooring and the like. The basic design of my own property is one of three models that repeat themselves over the entire development, some reversed to avoid any two neighboring houses appearing identical. It can be a little confusing when visiting friends who own a mirror-image layout of your own home—you find yourself in the garage when you were aiming for the bathroom—but the developer’s ploy is pretty effective. The company mass-produces something it can pass off as being individual, with an appropriately higher price tag, making for a highly profitable operation. The owners bask smugly in the belief they own a unique home, while in truth it’s at best just a mildly personalized common box.

The word “custom” has always been something of a misnomer when it refers to production motorcycles, too. In the purest sense of the word, any bike that’s a one-off can legitimately be called a custom, be it a chopper or sportbike. Likewise, once a design is duplicated, it is by definition no longer custom-built. By the time the bike reaches production figures in the tens of thousands, the term should have lost its significance entirely, no matter how long said bike’s forks are. But that’s not the common perception. Once the chopper trend hit mainstream, the names became interchanged, and somehow the handle has stuck.

Despite two decades of the off-the-rack custom bikes, the true art of customizing has continued undeterred, spurred on by the various bike-building competitions and, more recently, cable TV shows. With super-wide rear tires, seats barely above the ground and forks like barge poles, the show bikes have inspired builders such as Big Bear Choppers, American Iron horse and Big Dog to produce low-volume series for the street. Big Dog currently offers five base models, each one hand-built and custom painted to the customer’s exact specifications. The Ridgeback model, for example, comes with a whopping 330mm rear tire, and an 82.5” wheelbase as standard. While these bikes have witnessed steadily growing sales, the mainstream bike manufacturers have mostly kept their distance from following the extreme show bikes, most of which would be quite impractical if not downright illegal as road-going machines.

In the last decade, the production trend has been more toward cruisers, with a heavy rear end and a heavy front, such as the Harley-Davidson Fat Boy. This mostly replaced the earlier chopper style with a heavy rear and light front, exemplified by the Yamaha Virago XV1100, and more recently, the Harley-Davidson Softail Deuce. Recently though, a few models have challenged that tendency with a lighter, sportier and more chopper-oriented style, such as the Yamaha Raider and the Kawasaki Vulcan 900 Custom. Even Harley-Davidson has contributed to the smoother, more stylized show-bike look with the Rocker, although surprisingly, the Harley looks the least convincing of the group.

The Harley-Davidson Rocker is not the company’s first attempt at creating a mass-produced “semi-custom” motorcycle. The company practically invented the category when Willie G. Davidson unveiled the radical, boat-tailed Super Glide way back in 1971.
But the tables have really been turned by Honda, who surprised the world with the Fury, released in January at the Cycle World International Motorcycle Show in New York. In a departure from Honda’s previous cruiser models, the Fury is an undiluted outlaw chopper, while boasting all the niceties of Honda’s reputation for function and reliability. By utilizing the VTX’s 1300 engine, rather than the 1800 unit (now discontinued with the closure of the Marysville, OH plant), the price has been kept within the vital $15,000 bracket. Even in today’s depressed market, customer response has been unprecedented. Norm Arfsten, sales advisor at my local Honda dealer Roseville Cycle Center, told me he had been inundated by e-mails from would-be owners, even before full details of the bike had been released. With prices of the low-volume manufacturers typically above $30,000, Norm reckoned that with an expected MSRP of around $13,500, Honda was onto a sure winner with the Fury.

What is most striking about the design, beyond the 71.2” wheelbase and 200-series rear tire, are the clean lines and lack of dangling tubes or cables. Even Honda admits that achieving this on a production motorcycle wasn’t easy. “In truth, creation of the Fury posed a considerable challenge. This ground-breaking concept had to strike a delicate balance. The extended chopper look, with its stretched wheelbase and exaggerated steering rake, combines with the stellar levels of function that are part of every Honda. The design focus began with the high steering head/prowounced steering rake/open look in the front end and then radiated outward from there. With such a visually stunning appearance, the final incarnation of the Fury required a significant amount of communication and cooperation between the styling team in the USA at Honda Research Americas (HRA) and the Honda engineers at HGA in Japan. Original sketches and clay mock-ups were tweaked and refined in innumerable ways, leading to small but elegantly simple feats of engineering wizardry that were performed to achieve the goal.

“Perhaps even more than the Rune or the DN-01, the Fury represents a clear stretch from conventional Honda design wisdom, as the chopper is a uniquely American concept. A few select accessories are offered, although it seems Honda would prefer to encourage its customers to personalize the bike in a more individual manner. In stock form, the Fury threatens to deepen the paradox of the mass-production custom bike. It may be that the era of the semi-custom motorcycle has arrived.”

Visit us at WWW.MCNEWS.COM ● MAY 2009
We’ve all heard of (and sometimes had) “unintended consequences.” A good example is the rider who decides to spiff up his bike and gets a little bit too enthusiastic and uses Armor-All on his tires. It’s true that they look better, but when he hits the next curve, well—he actually hits it. That’s an unintended consequence.

When we take medications for an illness, the Law of Unintended Consequences can really hit hard. This is just as true for over the counter preparations as it is for prescription-only. As motorcyclists, we are more at risk while on our bikes than when driving our cages. Depending on our riding style and where we’re riding that day, the loss of even a little “edge” can be fatal.

It’s been well established that over the counter, 1st generation antihistamines, like brompheniramine (Dimetapp, Robitussin Allergy), chlorpheniramine (Sin-glet, Chlortrimeton, some Vicks 44), diphenhydramine (Benadryl, Nytol) are a cause of sedation that results in accidents. FYI, the older antihistamine, diphenhydramine (Benadryl) is also sold as Sominex, perhaps the leading over the counter sleep aid. It’s still a very useful medication—in fact, it’s stronger than the newest, prescription-only antihistamines like Zyrtec, Allegra, Clarinex and Xyzal. Benadryl also tends to cause the most sedation. One pearl: it’s a good cough suppressant, too, though not as good as codeine or hydrocodone. If you’ve got a really bad chest cold and can’t sleep, it’ll help almost as much as the prescription codeine-containing cough syrup or the old Vicodin you’ve got left over from the time you used Armor-All on your tires.

Another unintended consequence (UC) that’s not common knowledge is the way quinolone antibiotics like Cipro, Levaquin and Floxin can weaken tendons. I had a patient who needed to take Levaquin for a severe, recurrent case of sinusitis. She was cautioned about not exerting herself unduly, but ruptured her supraspinatus tendon (rotator cuff) while painting with a small paintbrush.

Quinolones also have the ability to give caffeine an unexpectedly strong effect on you. There have been a number of other reports of unusual sensations and behaviors, too. Since Cipro is prescribed very commonly (some say too commonly) if’d be a very good idea to make sure you don't have any of these effects before riding (same goes for Levaquin, Floxin, etc.).

Birth control pills and some antibiotics can cause “sun poisoning,” even old, “safe” antibiotics like tetracycline and minocycline. Folks with acne, rosacea and other common problems take them for years. You might be fine until you go on a road trip and get a lot of sunlight on your skin. The sun sensitivity resulting from taking these drugs can change a brief sun exposure into a bad sunburn.

Anticholinergic effects are common with a wide variety of meds, including Benadryl, mentioned earlier. These drugs are often used for overactive bladder, stomach problems and breathing problems among others. Effects produced by these meds include those on the hollow organs, including acute urinary retention (if this happens, you’ll start thinking of a catheter as a good thing) and constipation (never a good thing, unless you’re on a bus trip over the Andes and have the runs); blurred vision and intolerance to bright light; dry mouth and loss of sweating (can you say “sun stroke?” I knew you could...); and what may be worst of all for riders: Sedation, clumsiness and confusion.

These effects are more likely the older you get, too, which is when you’re most likely to take medications. What is worse is that since different meds have anticholinergic effects, they can add up. You might be tolerating your Spiriva (an excellent breathing medication which is an anticholinergic) very well, but then the GI doc prescribes some Bentyl or Donnatal (also anticholinergics) and next thing you know you’ve ridden your Gold Wing to the Laughlin River Rally instead of to Tulsa for the Wing-Ding.

Grapefruit, surprisingly, can have big effects on medications. Two days of grapefruit juice increased Lipitor levels more than 12 times in one study. It can increase levels of verapamil, sildenafil (Viagra), and triazolam (Halcion), too, and its effects can last up to three days. Grapefruit can also prevent your body from breaking down a number of drugs using the CYP3A4 liver enzyme.

Take-home message—if you’re taking any prescription medication, ask the doctor and the pharmacist what side effects to watch for. However, if you do (especially if you read the possible side effect list you get at the drugstore) you might experience the nocebo effect.

You’ve probably heard about the placebo effect—when you’re given a medication that you think will work, you’re likely to get better, even if the “medication” is an inert pill with no active ingredients (a placebo). This effect is significant in lots of studies, people improve with the placebo alone (which has led me to wonder why they just don’t use double strength placebos—i.e., “Placebo DS”).

The nocebo effect occurs when people are told what side effects might happen with a drug—they’re more likely to get that side effect. That’s why I tell my patients that reading the side effect info that comes with their prescription can be hazardous to their health. Ideally, your doctor (and/or maybe your pharmacist) should be able to tell you which effects are likely to be a concern, since they (hopefully) know what you’re taking.

A good question, any time you’re prescribed a new medication, is “How does this work with the other medications I’m taking?” When I have a patient who brings in a current, legible list of all their meds at each and every visit, this question’s a lot easier to answer. In fact, if you take any medication regularly, be sure to have a list of all the medicines and doses with you. If you don’t have a list, it’s worth writing them down, right now.

And don’t leave home without it.

Recent Trends
by Ken Condon

A TREND can be a short-term fad, or it can be a development that has a long-term influence over a longer term. In motorcycling, both types of trends occur. Short-term trends include styling crazes, such as the wild, multi-colored paint schemes on sportbikes of the 1990s. Long-term trends include innovations in mechanical systems that influence how motorcycling evolves.

In this installment, I will reflect on some past trends and highlight some of the trends we are experiencing today and give you an idea of what is being done in response.

Technology

Trends in motorcycle technology include new ways to increase power, improve maneuverability, enhance safety—and of course, sell more bikes. The result is a motorcycle industry that is technologically cutting edge.

Sometimes it’s difficult to recognize trends while they are happening, but looking back, it’s easy to see many of the tangible changes that have helped shape the modern motorcycle. During the 1970s, manufacturers focused heavily on increasing power. In the late ’60s, a 500cc bike was considered large, and the hottest motorcycle of the era was the 498-cc Triumph 650 Bonneville. But, in 1972 Kawasaki stunned the market with the 81-hp, 903cc Z1. Suddenly a 500cc motorcycle became a middleweight and the perception of what constitutes a powerful motorcycle changed forever.

Unfortunately, frames and suspension technology didn’t keep up with the increase in power. This is where European bikes held their ground. In 1976, Reg Pridmore’s BMW R100 won the first AMA Superbike title with only 70 hp to work with. This heat showed the Japanese that a sound chassis was critical for success, so Japan began focusing on handling and braking performance.

One thing that helped manufacturers improve handling was tire technology. Tires advanced significantly during the 1970s and ’80s, and the introduction of radial tires catapulted handling performance even further. Recently, technology has allowed tire manufacturers to offer dual and even triple compound tires that combine the edge grip of a supersport tire with the wear characteristics of a sport touring tire.

Today, we are at the threshold of several new technological trends that will undoubtedly change motorcycling forever. Electrically adjustable suspension, GPS navigation systems and tire pressure monitors make riding a motorcycle safer and more convenient.

Electronics are also being used more and more: in variable resistance steering dampers in fuel delivery and in managing traction. We’ve had electronic fuel injection and anti-lock braking systems for sometime now, and more and more bikes are available with some form of ABS. Honda’s new CABS braking system is the first fitted to a supersport. This system puts a whole lot of technology between the rider and the brake rotors. Relying on technology for such a critical task makes many worry about the reliability and safety of this feature, and whether brake feel will suffer. Thankfully, there is a fail-safe system to ensure braking even if one component were to stop working.

Another electronic system being introduced is an engine management system designed to control power delivery. The system found on the current GSX-R1000 allows the rider to choose from three different levels of power delivery, the “B” and “C” modes soften power for less intimidating response or for controlling wheelspin under acceleration, which is useful for managing slippery conditions. Although not typically electronic, back-torque limiting or “slipper” clutches are another piece of technology that prevent rear tire skids caused by abrupt clutch release and/or mismatched rpm when downshifting.

The technology of gear shifting is evolving as well. The automatic transmissions found on the Aprilia Mana and various big-bore scooters point to a new trend that may attract a segment of the riding community who want to simplify motorcycle operation. Further down the road you can expect to see not only fully automatic bikes, but also fully electric motorcycles.

Technology is not always warmly embraced. The transition from drum to disc brakes, from kick to electric start, from carburetors to fuel injection, from bias ply to radial tires was not always trusted at first. Look back at the bikes from the ’70s and you’ll see both electric and kick-starters fitted. Eventually, these technologies proved their worth and riders embraced them as if they had wanted nothing else.

We can assume that one of the prime reasons manufacturers develop new technologies is to help sell bikes. But, another reason for including many of these new technologies into motorcycles is safety. With the increase in rider population and the corresponding increase in injuries and fatalities, the motivation for increasing safety is huge.

Demographic Trends

The face of motorcycling continues to change as well. The number of women riders, returning riders and new riders continues to increase.

The Motorcycle Industry Council (MIC) is conducting a survey scheduled to be completed early this year. Early data indicates that women make up 12.4% of riders, returning riders and new riders combined.

Another preliminary finding from the MIC rider survey is that more people are...
The growth in the number of female riders is a trend that has gotten the attention of motorcycle as well as clothing manufacturers.
thing to be done. Anti-motorcycle legislation is one response to this trend; tighter regulation is another, which may someday include stricter testing standards and tiered licensing.

One good thing that is coming out of the bad news is the pursuit of updated and accurate data. The Motorcycle Causation Study, what I like to call the “new Hurt Report,” is intended to collect that information. The study is being funded with $2.8 million in Federal dollars and $2.8 million matched from the MIC and others. In 2008 the Oklahoma State University Transportation Center came up with a methodology for conducting the study and NHTSA conducted a preliminary protocol study on the OCU methods. The Federal Highway Administration (FHWA) will conduct the final study of 900 motorcycle crashes sometime this year, however delays are occurring. The methodology is being questioned, as is the way the study is being funded. The delays are unfortunate, but the commitment to collect accurate and relevant information is welcome.

Another government activity of interest is the U.S. Department of Transportation Action Plan to Reduce Motorcycle Fatalities (DOT HS 810 855). The plan cites areas where quality of crash data, machine design, behavioral countermeasures, infrastructure countermeasures and cooperation between states can be improved.

One notable topic of the plan includes a discussion of the accuracy and relevance of the data provided, specifically the value of data based on vehicle miles traveled (VMT) versus data based on number of registrations. Up until recently, state reporting of VMT has been optional and based heavily on estimates, which makes it highly suspect (see Wendy Moon’s Over 40 survey for how this changes data interpretation). Thankfully, providing VMT data is no longer optional and the DOT is working with states to improve the quality of motorcycle exposure data.

Another interesting point in the DOT’s plan is the focus on improved infrastructure, including roadway design and maintenance, lighting, signage, markings, and roadside barriers. The DOT is looking to create a nationwide standard for constructing and maintaining roadways that are motorcycle friendly.

Safer Crashing

Roadways that have access, exit and intersection designs that help prevent crashes are an excellent use of resources. But organizations both here and abroad who are involved in the future of motorcycle safety are also identifying areas where improvements can be made to reduce injury in the event of a crash.

Often these agencies focus too much attention on reducing injury at the expense of crash prevention. This may be because programs designed for crash prevention seem harder to imagine, administer and regulate. Driver awareness programs and rider training are getting more attention from government agencies, but much attention is still focused on “after crash” issues.

We all know about the debate over mandatory helmet use as a way to reduce injury. Victoria, Australia instituted the first helmet law back in 1961. Currently, all but three of the United States requires helmet use for some portion of the population. 27 states require helmets only for those under 20, 17 or 14 years of age, with 21 states (including the District of Columbia) requiring all riders to wear a helmet (aka “universal” helmet law). Helmets are the most recognized piece of safety equipment, but airbags, inflatable vests and leg guards are other injury reducing innovations that are either available or being developed.

While some regulations for reducing injury will likely be contentious, it is hard to imagine a motorcyclist protesting efforts to make roadways a safer place to crash. The Motorcycle Industry of Europe estimates that hitting a crash barrier is a factor in between 8% and 16% of rider deaths and contributes to a five-fold increase in injury severity. European governments have begun designing motorcycle-friendly roadways and retrofitting guardrails with secondary rail systems. These secondary systems include either metal sections or plastic tubes that are attached below the existing rail to prevent a rider’s arms and legs from becoming entangled in the vertical posts.

For good or bad, our favorite pastime is changing. It is good news that manufacturers are making safety features more affordable and that government agencies are taking motorcycle safety seriously. This is important, because we do not want to be left out of consideration as new roads are built and new technologies and “smart” roadway systems are designed. Also, rider training will likely evolve as agencies become more concerned with rider safety. Perhaps current rider training curriculum will evolve and on-road training can someday become as widely available in the States as it is in other parts of the world.

However, it is in all motorcyclists’ interest to stay informed about future trends and to voice their concerns to their legislators so that decisions made to improve safety maintain the freedoms that we all treasure. Stay tuned.

The Author

Ken Condon is a current MSF RiderCoach, chief instructor for Tony’s Track Days and author of Riding In The Zone: Advanced Techniques for Skillful Motorcycling, available though Whitehorse Press and from: www.ridinginthezone.com
What’s Happening

May

<table>
<thead>
<tr>
<th>May</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31</td>
</tr>
<tr>
<td>April 1 thru September 30</td>
<td></td>
</tr>
</tbody>
</table>

The Honda Riders of Tidewater, 6th Annual Virginia Grand Tour to benefit the Pediatric Brain Tumor Foundation. There are 15 checkpoints located all across Virginia, you have all season to complete at least 12 of them to qualify as a finisher. Information: arcticride.com; simpkinsterry@cox.net or Virginia Grand Tour; 205 Pamico Run; Yorktown, VA 23693.

April 30-May 2

HOG, Arizona State Rally, Tucson, AZ. Information: members.hog.com

May 1-3

United States Classic Racing Association, Third Annual Motogiro East 2009 Vintage Road Rally, Eastern Catskill Mountains, NY. Qualifying motorcycles must be made before 1969 with maximum displacement of 305cc. Information: raceasctra.com

May 2

IronSocks 500, Point To Point Challenge, a Ride for the Heart Foundation Charity Ride. The format is based on the long distance Iron But Charity Rides but half the distance; start locations: Henderson, NV, Modesto and Montclair, CA ending in Laughlin, NV. This is a non-profit organization dedicated to raising funds for both national and local heart-related charities. Information: Bill (760) 644-2118; ridefortheheart.com

ABA TE Of Michigan Region 5, Annual spring Run and Membership Party, Muskegon, MI. Information: Robert 231-689-0774; abatemiregion5.com

May 3

Pediatric Brain Tumor Foundation, Los Angeles Ride for Kids, Road Ride, American Honda Motor Co. Torrance, CA. Information: 800-253-6530; rideforkids.org

Pediatric Brain Tumor Foundation, Triangle Area Ride for Kids, Road Ride, White Oak Recreation Area, White Oak Beach Road, Lake State Park, between Pittsboro and Raleigh, NC. Information: 800-253-6530; rideforkids.org

Concours Owners Group, Sport Touring Camaraderie Ride, Breakfast 8:30 a.m., Country Market Restaurant, Flying J Truck Stop, Winchester, VA. Five rides to choose from 150 to 200 miles long, all self-guided. Information: Russell W. Fleming, 410-374-9687. All makes and brands motorcycles are welcome.

May 4-8

AMA District 37 Dual Sport, Countdown’s Mexico To Canada 1st half, (Adventure Bike Ride), Tecate, Mexico. Information: D37 Dual Sport Rider Hotline 626-429-2407.

May 7-8

Harley-Davidson, Cruisin’ The Coast Spring Bike Week, Myrtle Beach, SC. Information: myrtlebeachharley.com

May 11-12

Keith Code’s California Superbike School, all levels, Thunderbolt Raceway, Motorsport Park, Millville, NJ. Information: 800-530-3350; superbikeschool.com/schedule

May 13 and 14

Keith Code’s California Superbike School, two-day camp, Thunderbolt Raceway, Motorsport Park, Millville, NJ. Information: 800-530-3350; superbikeschool.com/schedule

May 14-16

HOG, Nevada State Rally, Boulder City, NV. Information: members.hog.com

May 15

Keith Code’s California Superbike School, all levels, Thunderbolt Raceway, Motorsport Park, Millville, NJ. Information: 800-530-3350; superbikeschool.com/schedule

May 15-17

HSTA, Twistar, The Round Barn Lodge, Spring Green, WI. Information: Larry Mayhew, E 4830 Hwy. 14 & 60; Spring Green, WI 53588; 608-583-3905; imayhew@hughes.net

May 16

AMA District 37 Dual Sport, Orange County Dualie’s Charity Ride, Beaumont, CA. Information: D37 Dual Sport Rider Hotline 626-429-2407.

ABA TE Region 5, Annual Spring Poker Run, Baldwin, MI. Information: Bob Rogers, 231-689-0774; www.abatemiregion5.com

May 16 and 17

Streetmasters, Precision Cornering Workshop, Morning meeting at Amtlopce Valley Inn Conference Center, Lancaster, CA and then transfer to Horse Thief Mile, Willow Springs International Motorsports Park, Rosamond, CA. Information: 805-464-0544; streetmasters.info

May 17

Pediatric Brain Tumor Foundation, Middle Tennessee, Ride for Kids, Road Ride, Jim Warren Park, Franklin, TN. Information: 800-253-6530; rideforkids.org

GWTA Southern California Chapter O, Straw-O-Berry Ride, through Ventura County backcountry, start and finish at Cal Coast Motorsports, Ventura, CA. Information: Chuck Burton 805-647-7382; channelislandsTINGS.com

May 17 thru October 25

Shelburne Museum, Round Barn Gallery, Motorcycle Exhibit Full Throttle: Vintage Motorcycles, Custom Choppers and Racing Machines. Museum is located seven miles south of Burlington, VT. Info: Leslie Wright, 802-985-3346; lwright@shelburnemuseum.org

May 18-19

Keith Code’s California Superbike School, all levels, Virginia International Raceway,
Alton, VA. Information: 800-530-3350; superbikeschool.com/schedule

May 20 and 21

Keith Code’s California Superbike School, two-day camp, Virginia International Raceway, Alton, VA. Information: 800-530-3350; superbikeschool.com/schedule

May 22-23

American Supercamp School, dirt bike training that focuses on improving cornering techniques for safety and speed, Springfield, IL. Info: 970-227-2385; americansupercamp.com

May 22-24

HOG, Nebraska State Rally, Grand Island, NE. Information: members.hog.com

May 22-25

GWRRA WA, WA-L Annual Desert Spring Fling, The Benton County Fairgrounds, Kennewick, WA. Information: M. R. Messinger 509-582-4560; gwrра-wа-l.org

HSTA, Tristar, Allegheny Inn, Sparta, NC. Information: Gary Christopher, 48 Founders Way, Arden, NC 28704; 828-713-1073; bentaero@bellsouth.net

May 24

Rolling Thunder XXII, Ride For Freedom, assembly area North Pentagon parking lot, 8:00 a.m., Washington DC. Information: rollingthunder1.com

AMA Flat Track Racing, Twins Season Opener, Springfield, IL. Information: harley-davidson.com

May 24-25

American Supercamp School, dirt bike training that focuses on improving cornering techniques for safety and speed, Springfield, IL. Information: 970-227-2385; americansupercamp.com

May 26-27

Tony’s Track Days, designed for street riders, New Hampshire Motor Speedway, Loudon, NH. Information: tonystrackdays.com

May 28-30

HOG, Arkansas State Rally, Rogers, AR. Information: members.hog.com

May 29-31

Platinum Elite Events, LLC, Detroit’s 2nd Annual Bike Weekend, Warrendale Shelter-Nines Park, Detroit, MI. Information: vip-platinumelite.com

May 30

Borderline Riders, 4th Annual Ride for the Red; a fundraiser for the Red Cross: The Northern Nevada Chapter, Reno, NV. Information: The Red Cross, 775-856-1000; Rick Goin 775-772-8077.

GWTA Chapter C, The Blue Crew Charity Ride, 100% of the registration proceeds donated to Christmas House of Snohomish County. Registration 8:20 to 10:00 a.m., Smokey Point Cycle Barn near Arlington, WA. Information: bluecrewfunrun.com

May 30-31

Floribama Riders, Spring 2009 Track Day, Talladega Gran Prix Raceway, Mumbord, AL. Information: Garry Davis The Floribama Riders Vulcan Chapter, 205-999-1708; gdavis@actionairllc.com

May 31

Pediatric Brain Tumor Foundation, Albuquerque Ride for Kids, Road Ride, Journal Pavilion, Albuquerque, NM. Information: 800-253-6530; rideforkids.org

Brian Aselton Organization, 10th Annual Officer Brian A. Aselton Memorial Motorcycle Run, Gengras Harley-Davidson/Buell, Hartford, CT. Information: John Aselton 860-594-6247; scholarship@brianaselton.org. This is a non-profit organization with all proceeds to benefit the Officer Brian A. Aselton Memorial Scholarship Fund Inc.

June 1-6

Ameridte & TourExpo, Lake George, NY. Information: www.tourexpo.com

June 2

June 3-6

HOG, Tennessee State Rally, Murfreesboro, TN. Information: members.hog.com
What’s Happening

June 4 and 5

Keith Code’s California Superbike School, two-day camp, Barber Motorsports Park, Birmingham, AL. Information: 800-530-3350; superbikeschool.com/schedule/

June 4-6

HOG, Kansas State Rally, Lawrence, KS. Information: members.hog.com

June 5-7

Buell Motorcycle Company, Homecoming Celebration, East Troy Factory in conjunction with AMA Pro Racing’s scheduled stop at Road America, Elkhart Lake, WI. Information: 989-365-7223; roadamerica.com

June 6

Sacred Heart, Bike Blessing Of The Bikes, Sacred Heart Church, Bad Axe, MI. Information: 989-269-7729.

June 6-7

Keith Code’s California Superbike School, all levels, Barber Motorsports Park, Birmingham, AL. Information: 800-530-3350; superbikeschool.com/schedule/

June 7

Canton Motorcycle Club, Annual Fun Run, starting at their clubhouse, Brewster, OH. Information: Dave Weinreb 330-854-3597; dweinreb@sbcglobal.net

Pediatric Brain Tumor Foundation, Cleveland Ride for Kids, Road Ride, Rocky River High School, Rocky River, OH. Information: 800-253-6530; rideforkids.org

Pediatric Brain Tumor Foundation, Atlanta Ride for Kids, Road Ride, Six Flags Over Georgia, Austell, GA. Information: 800-253-6530; rideforkids.org

Pediatric Brain Tumor Foundation, Richmond Ride for Kids, Road Ride, Richland Times-Dispatch, Mechanicsville, VA. Information: 800-253-6530; rideforkids.org

Pediatric Brain Tumor Foundation, Colorado Ride for Kids, Road Ride, Jefferson County Human Services Bldg, Golden, CO. Information: 800-253-6530; rideforkids.org

June 8-11

COG, Shiftin’ ‘N Grimmin’ National Rally, Fontana Dam, NC. Information: Cog-online.org

June 11-13

HOG, Kentucky State Rally, Paducah, KY. Information: members.hog.com

HOG, Ohio State Rally, Zanesville, OH. Information: members.hog.com

HOG, South Dakota State Rally, Watertown/Fort Sisseton, SD. Information: members.hog.com

June 11-14

VROC, Wolfman’s Wandering Rally, Richmond, KY. Information: heretokingdomcome.com

June 12-13

Antique Motorcycle Club of America, Viking Chapter, 2009 National Meet, Minnesota State Fairgrounds, St. Paul, MN. Information: vikingmc.org

HOG, Illinois State Rally, Springfield, IL. Information: members.hog.com

June 12-14

Antique Motorcycle Club of America and the Northeast Coalition of AMCA chapters, The Rhinebeck Grand National Super Meet: Antique Motorcycle Show and Swap Meet, Dutchess County Fairgrounds, Rhinebeck, NY. Information: Tim Cantele 518-828-2768; rhinebecknationalmeet.com

ABATE, State Field Meet, Oil City, MI. Information: Robert 231-689-0774; abatemiregion5.com

June 13-14

Keith Code’s California Superbike School, all levels, Streets of Willow Springs, Rosemond, CA. Information: 800-530-3350; superbikeschool.com/schedule/

June 14

Forth Plus Motorcycle club of Fort Collins, CO, 15th Annual Poker run for Multiple Sclerosis, Fort Collins Motorsports, Fort Collins, CO. Information: 40+ Motorcycle Club; PO Box 1703; Fort Collins, CO 80522-1703; call Wiff 970-223-1794.

AMA District 37 Dual Sport, Pediatric Brain Tumor Foundations’ Ride For Kids, San Bernardino, CA. Information: D37 Dual Sport Rider Hotline 626-429-2407.

June 13-21

Laconia Motorcycle Rally and Race Association, 86th Laconia Bike Week, Laconia, NH. Information: laconiabikeweek.net

June 14

Pediatric Brain Tumor Foundation, Indiana Ride for Kids, Road Ride, Indianapolis Motor Speedway, Indianapolis, IN. Information: 800-253-6530; rideforkids.org

Pedicratic Brain Tumor Foundation, Southern California Ride for Kids, Dual Sport, Glen Helen Raceway Park, San Bernardino, CA. Information: 800-253-6530; rideforkids.org

June 15 and 16

Keith Code’s California Superbike School, two-day camp, Streets of Willow Springs, Rosemond, CA. Information: 800-530-3350; superbikeschool.com/schedule/

Tony’s Track Days, designed for street riders, Thunderbolt Raceway, Motorsport Park, Millville, NJ. Information: tonystrackdays.com

June 16-19

KawaNOW, Annual Rally, Custom, SD. Information: KawaNow.org

June 17-20

HOG, Virginia State Rally, Roanoke, VA. Information: members.hog.com

June 17-21

NEVROC, Laconia Rally, Epsom, NJ. Information: vroc.org

June 18-20

HOG, Alaska State Rally, Fairbanks, AK. Information: members.hog.com
HOG, Colorado State Rally, Montrose, CO. Information: members.hog.com

HOG, Wisconsin State Rally, Appleton, WI. Information: members.hog.com

June 18-22
BMW Club of Northern California, Inc., Chief Joseph Rally, John Day, OR. Info: bmwro.org

June 20-21

June 21-25
MSTA: Motorcycle Sport Touring Association, STAR, StonewallJackson Resort, Staunton, VA. Info: Galen Diehl; 263 Beaver Ridge Rd.; Collinsville, VA 24078; 276-647-3162; gediehl4@comcast.net; ridemsta.com

June 22-25
AGWA, Gold Classic XXVI Rally, Ramada Inn, Seekonk, MA. Information: Betsy Vonspreckelsen 401-724-1231; freckelbv@verizon.net; agwa.com

June 25-27
HOG, Montana State Rally, Cody, MT. Information: members.hog.com

June 25-28

HOG Minnesota State Rally, Duluth, MN. Information: members.hog.com

June 26-28
HOG, Indiana State Rally, Evansville to Columbus, IN. Information: members.hog.com

June 27-28
AMA District 37 Dual Sport, Big Bear Trail Riders, Big Bear Run, Big Bear Lake, CA. Information: D37 Dual Sport Rider Hotline 626-429-2407.

June 28
Concours D’Elegance, Stanford University, Palo Alto, CA. Information: pedoneschrysler@aol.com; paconcours.com

GWTA, Front Range Gold Chapter A and Old Chicago Pasta & Pizza, 26th Annual ‘Humdinger’ Poker Run, start and finish at Old Chicago, Longmont, CO. Info: Jim and Glenda Boggess, 303-772-3755; touringinstyle@aol.com

June 30–July 1
Keith Code’s California Superbike School, two-day camp, Miller Motorsports Park, Salt Lake City, UT. Information: 800-530-6350; superbikeschool.com/schedule/

July

S M T W T F S
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

July 2-5
GWRRA 31st Annual International Wing Ding: Cruising To The Pow Wow, Tulsa, OK. Information: Wing Ding Registration; P.O. Box 42450; Phoenix, AZ 85080; 800-843-9469. In Phoenix, 623-581-2500.

July 16-19
BMW MOR National Rally, Johnson City, TN. Info: BMW Club of Northern California Inc.; P.O. Box 2472; Santa Clara, CA 95055; bmwnorcal.org

July 24-26
AMA Vintage Motorcycle Days, Mid-Ohio Sports Car Course, Lexington, OH. Info: 800-MID-OHIO; www.america.org

Information subject to change. For a listing of your event, send all relevant information to: MCN—What’s Happening, P.O. Box 6050, Mission Viejo, CA 92690, or e-mail editor@mcnews.com, subject line: What’s Happening. To be assured of a listing, please let us know AT LEAST 90 DAYS before the first of the month in which the event occurs.
Cycle Attorney

Q: You may have taken some heat from the flag wavers on the courthouse steps, the guys who swear that the jury system is the holiest institution among the amber waves of grain. If they popped you, it’s because they don’t have a clue how juries think. You do. And your column was the best advice that an attorney ever gave a motorcyclist who is approaching the courthouse clerk’s office with an aggrieved look on his face.

For many years I labored in the vineyards on the defense side in civil cases in Washington, D.C. In 1997, I went down in a construction zone in the city, a case of liability so righteous that I get goosepimples thinking about it to this good day. But the first thing I told my lawyer when we sat down was, “Don’t even think about a jury demand. Just pray that they don’t ask for one.”

He was confused. The construction project was run from top to bottom by Hispanic contractors. I told him that it didn’t matter. A D.C. jury might not like our Latin friends, but they were going to like Biker Bob a lot less. We settled a week before trial. I never regretted that decision for one millisecond.

A: I didn’t, indeed, take a lot of heat from readers who felt my take on anti-motorcycle bias was wide of the mark. Bias is what we lawyers call it when people harbor a feeling of dislike towards another person or class of people. Courts try to allow counsel to expose bias so the jury can consider it in weighing a witness’s testimony, but in the case of anti-motorcycle bias, we’re not very successful at unmasking it. First, we’re afraid that by doing so we may simply make matters worse, and second, the prejudice is so widespread that by questioning a witness about it we may create sympathy for the prejudiced witness.

Many lawyers assume an injured motorcyclist will only get 60 to 70% of the award a similarly injured car driver would get. This is anecdotal but a commonly held belief among the Plaintiffs bar.

Street Strategy

Left Turner Trouble

by Ken Condon

You know that one of the most dangerous situations for a motorcyclist is when a driver in the opposing lane attempts to make a left-hand turn across your path. Much of what makes this scenario dangerous is the fact that drivers do not easily see oncoming motorcyclists. Part of the reason motorcyclists are not seen is because of their small size and narrow profile. Knowing this, you always make sure your headlight is working, and to increase conspicuity you added auxiliary lights on the front of your motorcycle.

You’ve heard that some riders swear that using high beams during the day increases conspicuity, but you subscribe to the idea that overly bright headlights can blind drivers and further obscure your profile and turn signals.

You have also heard many riders speak of the importance of brightly colored riding gear. You understand and respect this strategy, which is why you use a helmet with bright graphics, but you love your black leather jacket too much to consider buying a more conspicuous one.

Being conspicuous also means positioning yourself so that oncoming vehicles can see you. You know that too many riders ride close behind other vehicles, which blocks the vision of drivers until it is too late. Knowing this, you are careful to ride with plenty of following distance. You also know that it’s smart to use both the left or right hand portion of your lane as necessary to ensure that oncoming cars can see you.

These are the things they neglected to teach us in torts, trial practice court, ethics, or bar review courses. But they’re the things that distinguish a knowledgeable practitioner from a clown. The next time I’m crawling over to the curb in Columbia, I won’t be calling the guy with the red nose; I’ll be calling you.

Bob Higdon

Bob, I did, indeed, take a lot of heat from readers who felt my take on anti-motorcycle bias was wide of the mark. Bias is what we lawyers call it when people harbor a feeling of dislike towards another person or class of people. Courts try to allow counsel to expose bias so the jury can consider it in weighing a witness’s testimony, but in the case of anti-motorcycle bias, we’re not very successful at unmasking it. First, we’re afraid that by doing so we may simply make matters worse, and second, the prejudice is so widespread that by questioning a witness about it we may create sympathy for the prejudiced witness.

Many lawyers assume an injured motorcyclist will only get 60 to 70% of the award a similarly injured car driver would get. This is anecdotal but a commonly held belief among the Plaintiffs bar.

Today, you are riding through a residential neighborhood on your way to visit a friend. A car in the opposite lane signals his intent to turn across your lane. Your attention piques, because of the increased risk. There are no vehicles in front of you so you relax a bit, fairly confident that the driver will see you. But, you know better than to assume this is the case, so you slow slightly, move to the right portion of your lane to create a space margin and cover your brakes in readiness. As the oncoming driver nears, you notice that he is on his cell phone. This signals additional danger, so you begin to apply the brakes just before the driver suddenly darts across your bow. Even with your efforts to be seen, the driver still failed to see you. But, because you were alert to the danger and reacted to the clues, you were able to avoid a collision.
Contact Patch

Veteran Errors

I f you recall, in the March issue I wrote about the “Rookie Mistakes” that are most common to newer touring riders. This month, I’ve decided to approach the same general issue from the angle I have even more experience with—“Veteran Errors.” To wit:

Overconfidence: If, like me, you have ridden for many years and many thousands of miles without managing to damage your bike or your body, the natural tendency is to get lulled into a sense of complacency. Certainly there is nothing wrong with having a degree of faith in your equipment and your abilities, but when that faith erodes your level of caution or awareness of risk, you are asking for trouble. If you like analogies, as I do, think of motorcycling like a game of Russian roulette—if someone hands you a revolver with a round in one chamber, and you are able to spin the cylinder, put the gun to your head and pull the trigger seven or eight times without it going off, is it really any safer the next time you try it? Obviously, the risk of the gun firing has not lessened, anymore than it has become unlikely that some idiot in a four-wheeler won’t turn right into your path, just because it hasn’t happened the last 200 times you went riding. Motorcycling comes with inherent risks, and we need to be cognizant of them at all times.

Ignoring equipment checks: Obviously, this is another form of complacency, and I think perhaps the easiest one to which you can fall victim. Most of us were taught the simple T-CLOCK mnemonic when we first started riding, but how many of us still adhere to it? And for those of you not familiar, T-CLOCK simply stands for a series of checks that should be done before every ride: Tires and wheels, Controls, Lights, Oil, Chassis, and Kickstand. Now, I’ll be the first to admit that though I still go through the checks the day before starting a tour, on a day-to-day basis while on the road, I tend to ignore them. For many years, though, I would still at least check my tires every morning, and my oil and lights about every second or third day, but recently I’ve noticed that I don’t even bother with these simplest and most crucial checks. On a tour just a couple of months ago, it was one of my riding partners that noticed a spot on my rear tire where the core was actually showing through! I don’t mind telling you I was embarrassed, ashamed, and more than a little frightened by this. Sure, I had checked the tires before we left, but that had been eight days and over 2,000 miles earlier, and we still had over 500 miles of steep mountain passes to get through. I’m damn lucky I didn’t kill myself.

Falling into old habits: I haven’t met a rider yet who doesn’t have at least one, if not several, old bad habits related to his/her riding. A guy I rode with just last week had the fairly common one of not using his front brake, along with cutting the inside of a curve too tight. My personal bad habits are numerous, though the one I fight with the most is braking far too late into a turn, and going in with too much speed. I have been instructed by the best in the business on how to perform this task properly, and when I concentrate on what I am doing, I can usually pull it off fairly well. But if I let my mind wander while riding—as I often do, I invariably revert to my old habits, ending up with the binders halfway through a curve, unsettling the bike’s suspension, and generally completely screwing up both my line and my level of control. And when a dozen or more other riders are following you down a mountain, watching your moves, that can be very embarrassing—not to mention just downright dangerous.

If you have had help identifying your bad riding habits, and learned to correct them, it is not enough. You need to always be conscious of the needed corrective actions, and practice them over and over and over. I’m told that if you do this, eventually the new, better habit, will replace the old, but I evidently have not reached that level on my learning curve as yet.

Making assumptions, or riding on autopilot: Just this past week, I took a tour group on a seven-day route through California, Arizona and Nevada, that I have probably ridden at least 100 times before. I still love the route, and haven’t tired of it, but I also have to admit that my familiarity with every aspect of the ride makes me tend to assume that everything along the way will be the same as it always has been. That is a dangerous trap to fall into. I believe it is this same condition that accounts for the National Highway Traffic Safety Administration’s figures showing that 75% of all traffic accidents occur within 25 miles of the victim’s home.

When we ride or drive over the exact same route on a regular basis, we all tend to lapse into an “autopilot mode,” during which our concentration on the traffic and road conditions around us drops to a dangerously low level. If we are riding in unfamiliar territory, on an unfamiliar bike, or both, our awareness level goes way up, and we generally ride much safer. The hard part is trying to maintain that kind of safety consciousness even when riding the same old bike, on the same old roads.

Try to always remember that your environment is in a constant state of flux. Road conditions, traffic patterns, weather and any other of a number of factors can and will change without warning, and if you are assuming that everything will be the same as it was the last dozen times you rode this area, you are asking for trouble.

As I mentioned, I had ridden last week’s route over 100 times previously. This time, however, we ran into the worst snowstorm recorded for that area in over 50 years, with a three-inch accumulation on the highway…in the Mojave Desert! On another day, in Death Valley, where the average rainfall is less than three inches per year, it rained six inches in one day, completely washing out the roads. On the Pines To Palms Highway, where temperatures in the triple-digits are not at all uncommon, we encountered ice on the road. And even on the clear sections of the Pacific Trail, where I normally step up the speed a bit to enjoy the sweeping curves with which I am so familiar, I nearly sent the entire tour group over the edge, because I hadn’t counted on the highway department having been there the night before and dumping a truckload of loose cinders in the curves—to improve traction, of course, for the four-wheelers.

We all make mistakes. The important thing is to learn from them and to try not to repeat them.
O-RING DRIVE CHAINS will last a long time with regular cleaning. The problem is that cleaning them can be such a messy business that it tends to get avoided, and procrastination leads to premature wear and expensive replacements.

The KettenMax Chain Cleaner is meant to make the job so neat and easy that you'll have no excuse not to keep your chain in tip-top condition. Made in Germany with the usual Teutonic attention to detail, the unit is easier to appreciate in pictures than reading a description might suggest. An attractive package provides all the parts, which include hoses of different sizes and lengths to assemble the unit in Image 1.

Image 2 provides a close-up view of the various brushes inside, all of which can be removed from their slots for easier cleaning if desired. Image 3 shows the unit in position for chain cleaning. Note the hook and rope arrangement to restrain the unit, so your hands are free to spray cleaner into the hoses and to turn the rear wheel while doing so. Naturally, to support the rear wheel off the ground, either a rear stand or centerstand will be necessary. Because the unit is adaptable to chains of various sizes, the side brushes (white bristles) are meant to be cut to match the width of the inner links (Image 4). Scissors are recommended, and a #530 chain will need them trimmed quite a bit. A page of pictograms makes the assembly and installation easy to visualize, but directions are also provided in 14 different languages!

We used a spray can of WD-40 for our cleaning, although the included bottle can also be used when filled with a variety of O-ring friendly chemicals, like kerosene, for instance. A drain hose at the bottom of the unit is positioned to collect the excess into a pan or bottle. While we were quite satisfied with the results of the cleaning after several rotations of the tire while we sprayed a flood of WD-40 through the hoses, the unit's drain feature didn't work as intended, and the chain dripped along its full length (so a layer of newspapers on the floor would be our recommendation). Still, we had to admit the job was much quicker and less messy than the usual brush-and-solvent cleaning method, and a shot of Simple Green and a squirt with the garden hose made the unit clean enough to put away for next time.

Reasonably priced at $34.95, this is one of the better chain cleaning systems we've used.

—Dave Searle